Abstract:
A sequential integration process is described. An example process involves forming a wafer stack by bonding a first wafer to a second wafer with a front side of the first wafer facing a front side of the second wafer, the first wafer including a first device region formed on the front side of the first wafer and including a set of semiconductor devices. The example process involves, subsequent to forming the wafer stack, forming a second device region on a back side of the first wafer, the second device region including a set of semiconductor devices. The example process involves forming at least one interconnection layer on the second device region for electrically interconnecting the semiconductor devices of the second device region. The example process also involves forming at least one via extending through the wafer stack from the at least one interconnection layer and through the first wafer.
Abstract:
A device and method for forming a vertical channel device is disclosed. The method includes: forming a vertical semiconductor pillar on a substrate, the vertical semiconductor pillar including a first pillar section, a second pillar section and a third pillar section, wherein the second pillar section is arranged between the first pillar section and the third pillar section and wherein the second pillar section is formed of a material being different from a material forming an upper portion of the first pillar section and different from a material forming a lower portion of the third pillar section; forming a spacer layer on a peripheral surface of the upper portion of the first pillar section and on a peripheral surface of the lower portion of the third pillar section; and forming a gate stack embedding the second pillar section and said upper portion of the first pillar section and said lower portion of the third pillar section, wherein the spacer layer forms a spacer between the gate stack and said upper portion of the first pillar section and between the gate stack and said lower portion of the third pillar section.
Abstract:
A sequential integration process is described. An example process involves forming a wafer stack by bonding a first wafer to a second wafer with a front side of the first wafer facing a front side of the second wafer, the first wafer including a first device region formed on the front side of the first wafer and including a set of semiconductor devices. The example process involves, subsequent to forming the wafer stack, forming a second device region on a back side of the first wafer, the second device region including a set of semiconductor devices. The example process involves forming at least one interconnection layer on the second device region for electrically interconnecting the semiconductor devices of the second device region. The example process also involves forming at least one via extending through the wafer stack from the at least one interconnection layer and through the first wafer.
Abstract:
The disclosed technology generally relates to semiconductor devices and more particularly to a gate-all-around semiconductor device, and methods of fabricating the same. In one aspect, the method comprises providing on a semiconductor substrate between STI regions at least one suspended nanostructure anchored by a source region and a drain region. The suspended nanostructure is formed of a crystalline semiconductor material that is different from a crystalline semiconductor material of the semiconductor substrate. A gate stack surrounds the at least one suspended nanostructure.
Abstract:
The disclosed technology generally relates to semiconductor devices and more particularly to a gate-all-around semiconductor device, and methods of fabricating the same. In one aspect, the method comprises providing on a semiconductor substrate between STI regions at least one suspended nanostructure anchored by a source region and a drain region. The suspended nanostructure is formed of a crystalline semiconductor material that is different from a crystalline semiconductor material of the semiconductor substrate. A gate stack surrounds the at least one suspended nanostructure.
Abstract:
The disclosed technology generally relates to semiconductor devices and more particularly to a gate-all-around semiconductor device, and methods of fabricating the same. In one aspect, the method comprises providing on a semiconductor substrate between STI regions at least one suspended nanostructure anchored by a source region and a drain region. The suspended nanostructure is formed of a crystalline semiconductor material that is different from a crystalline semiconductor material of the semiconductor substrate. A gate stack surrounds the at least one suspended nanostructure.
Abstract:
A method for manufacturing a transistor device is provided, comprising providing a plurality of parallel nanowires on a substrate; providing a dummy gate structure over a central portion of the parallel nanowires; epitaxially growing extension portions of a second material, selectively on the parallel nanowires, outside a central portion; providing a filler layer around and on top of the dummy gate structure and the extension portions; removing the dummy gate structure to create a gate trench, exposing the central portion of the parallel nanowires; providing spacer structures on the sidewalls of the gate trench, to define a final gate trench; thinning the parallel nanowires, thereby creating free space in between the nanowires and spacer structures; and selectively growing a quantum well layer on or around the parallel nanowires, at least partially filling the free space, to thereby provide a connection between the quantum well layer and extension portions.
Abstract:
A method for manufacturing a transistor device is provided, comprising providing a plurality of parallel nanowires on a substrate; providing a dummy gate structure over a central portion of the parallel nanowires; epitaxially growing extension portions of a second material, selectively on the parallel nanowires, outside a central portion; providing a filler layer around and on top of the dummy gate structure and the extension portions; removing the dummy gate structure to create a gate trench, exposing the central portion of the parallel nanowires; providing spacer structures on the sidewalls of the gate trench, to define a final gate trench; thinning the parallel nanowires, thereby creating free space in between the nanowires and spacer structures; and selectively growing a quantum well layer on or around the parallel nanowires, at least partially filling the free space, to thereby provide a connection between the quantum well layer and extension portions.