Abstract:
According to various embodiments, a semiconductor wafer may include: a semiconductor body including an integrated circuit structure; and at least one tetrahedral amorphous carbon layer formed at least one of over or in the integrated circuit structure, the at least one tetrahedral amorphous carbon layer may include a substance amount fraction of sp3-hybridized carbon of larger than approximately 0.4 and a substance amount fraction of hydrogen smaller than approximately 0.1.
Abstract:
A micromechanical structure comprises a substrate and a functional structure arranged at the substrate. The functional structure comprises a functional region which is deflectable with respect to the substrate responsive to a force acting on the functional region. The functional structure comprises a carbon layer arrangement, wherein a basis material of the carbon layer arrangement is a carbon material.
Abstract:
A silicon-carbide substrate that includes: a doped silicon-carbide contact region directly adjoining a main surface of the substrate, and a dielectric layer covering the main surface is provided. A protective layer is formed on the silicon-carbide substrate such that the protective layer covers the dielectric layer and exposes the doped silicon-carbide contact region at the main surface. A metal layer that conforms to the protective layer and directly contacts the exposed doped silicon-carbide contact region is deposited. A first rapid thermal anneal process is performed. A thermal budget of the first rapid thermal anneal process is selected to cause the metal layer to form a silicide with the doped silicon-carbide contact region during the first rapid thermal anneal process without causing the metal layer to form a silicide with the protective layer during the first rapid thermal anneal process.
Abstract:
A micromechanical structure in accordance with various embodiments may include: a substrate; and a functional structure arranged at the substrate; wherein the functional structure includes a functional region which is deflectable with respect to the substrate responsive to a force acting on the functional region; and wherein at least a section of the functional region has an elastic modulus in the range from about 5 GPa to about 70 GPa.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming openings in a substrate. The method includes forming a dummy fill material within the openings and thinning the substrate to expose the dummy fill material. The dummy fill material is removed.
Abstract:
A passivation layer and a method of making a passivation layer are disclosed. In one embodiment the method for manufacturing a passivation layer includes depositing a first silicon based dielectric layer on a workpiece, the first silicon based dielectric layer comprising nitrogen, and depositing in-situ a second silicon based dielectric layer on the first silicon based dielectric layer, the second dielectric layer comprising oxygen.
Abstract:
According to various embodiments, a semiconductor wafer may include: a semiconductor body including an integrated circuit structure; and at least one tetrahedral amorphous carbon layer formed at least one of over or in the integrated circuit structure, the at least one tetrahedral amorphous carbon layer may include a substance amount fraction of sp3-hybridized carbon of larger than approximately 0.4 and a substance amount fraction of hydrogen smaller than approximately 0.1.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming openings in a substrate. The method includes forming a dummy fill material within the openings and thinning the substrate to expose the dummy fill material. The dummy fill material is removed.
Abstract:
A semiconductor device includes: a semiconductor body having an active region and an edge termination region between the active region and a side surface of the semiconductor body; a first portion including silicon and nitrogen; a second portion including silicon and nitrogen, the second portion being in direct contact with the first portion; and a front side metallization in contact with the semiconductor body in the active region. The first portion separates the second portion from the semiconductor body. An average silicon content in the first portion is higher than in the second portion. The front side metallization is interposed between the first portion and the semiconductor body in the active region but not in the edge termination region, and/or the first portion and the second portion are both present in the edge termination region but not in the active region.
Abstract:
A high voltage semiconductor device includes a semiconductor substrate including an upper surface, a high voltage electrically conductive structure disposed on the semiconductor substrate, a first step topography at an edge of the high voltage electrically conductive structure, a varying lateral doping zone disposed within the semiconductor substrate, and a layer stack including an electrically insulating buffer layer, a SiC layer over the electrically insulating buffer layer, and a silicon nitride layer over the SiC layer or a nitrided surface region of the SiC layer, wherein the layer stack conforms to the first step topography and extends over the varying lateral doping zone.