Abstract:
A Method for protecting a surface of a substrate includes processing the substrate, forming a pyrolytic carbon layer on at least one surface of the substrate, and subjecting the substrate to thermal treatment, specifically above a temperature of about 1300° C., typically above about 1400° C.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming openings in a substrate. The method includes forming a dummy fill material within the openings and thinning the substrate to expose the dummy fill material. The dummy fill material is removed.
Abstract:
A substrate carrier system for moving substrates in a vertical oven and a method for processing substrates are disclosed. In some embodiments, a method for oxidizing material or depositing material includes carrying a plurality of substrates by a substrate carrier and inserting the substrate carrier into a vertical oven, wherein the plurality of substrates are held by the substrate carrier in predefined positions, wherein an angle measured between a main surface of a substrate of the plurality of substrates at one of the predefined positions and a vertical direction is less than 20 degrees. The method further includes oxidizing a material on the plurality of substrates or depositing a material onto the plurality of substrates.
Abstract:
A method of manufacturing a semiconductor device includes: providing a silicon carbide substrate that includes device regions and a grid-shaped kerf region laterally separating the device regions; forming a mold structure on a backside surface of the grid-shaped kerf region; forming backside metal structures on a backside surface of the device regions; and separating the device regions, wherein parts of the mold structure form frame structures laterally surrounding the backside metal structures.
Abstract:
A micromechanical structure in accordance with various embodiments may include: a substrate; and a functional structure arranged at the substrate; wherein the functional structure includes a functional region which is deflectable with respect to the substrate responsive to a force acting on the functional region; and wherein at least a section of the functional region has an elastic modulus in the range from about 5 GPa to about 70 GPa.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming openings in a substrate. The method includes forming a dummy fill material within the openings and thinning the substrate to expose the dummy fill material. The dummy fill material is removed.
Abstract:
A method for processing a wide band gap semiconductor wafer is proposed. The method includes depositing a non-monocrystalline support layer at a back side of a wide band gap semiconductor wafer, depositing an epitaxial layer at a front side of the wide band gap semiconductor wafer, and splitting the wide band gap semiconductor wafer along a splitting region to obtain a device wafer including at least a part of the epitaxial layer, and a remaining wafer including the non-monocrystalline support layer.
Abstract:
A substrate carrier system for carrying substrates to a vertical oven and a vertical oven are disclosed. In an embodiment, the system includes a substrate carrier configured to carry a plurality of substrates and a substrate carrier support structure configured to be inserted along an insertion direction into the vertical oven, and to receive the substrate carrier in a direction substantially orthogonal to the insertion direction into a holding position in the substrate carrier support structure.
Abstract:
Carbon layers with reduced hydrogen content may be deposited by plasma-enhanced chemical vapor deposition by selecting processing parameters accordingly. Such carbon layers may be subjected to high temperature processing without showing excessive shrinking.
Abstract:
A substrate carrier system for moving substrates in a vertical oven and a method for processing substrates are disclosed. In some embodiments, a method for oxidizing material or depositing material includes carrying a plurality of substrates by a substrate carrier and inserting the substrate carrier into a vertical oven, wherein the plurality of substrates are held by the substrate carrier in predefined positions, wherein an angle measured between a main surface of a substrate of the plurality of substrates at one of the predefined positions and a vertical direction is less than 20 degrees. The method further includes oxidizing a material on the plurality of substrates or depositing a material onto the plurality of substrates.