Abstract:
A wireless communication system includes a first semiconductor module and a second semiconductor module. The first semiconductor module includes a semiconductor die connected to an antenna structure. The semiconductor die of the first semiconductor module and the antenna structure of the first semiconductor module are arranged within a common package. The semiconductor die of the first semiconductor module includes a transmitter module configured to transmit the wireless communication signal through the antenna structure of the first semiconductor module. The second semiconductor module includes a semiconductor die connected to an antenna structure. The semiconductor die of the second semiconductor module includes a receiver module configured to receive the wireless communication signal through the antenna structure of the second semiconductor module from the first semiconductor module.
Abstract:
A method for producing a semiconductor component with a semiconductor body includes providing a substrate of a first conductivity type. A buried semiconductor layer of a second conductivity type is provided on the substrate. A functional unit semiconductor layer is provided on the buried semiconductor layer. At least one trench, which reaches into the substrate, is formed in the semiconductor body. An insulating layer is formed, which covers inner walls of the trench and electrically insulates the trench interior from the functional unit semiconductor layer and the buried semiconductor layer, the insulating layer having at least one opening in the region of the trench bottom. The at least one trench is filled with an electrically conductive semiconductor material of the first conductivity type, wherein the electrically conductive semiconductor material forms an electrical contact from a surface of the semiconductor body to the substrate.
Abstract:
A semiconductor device including an Integrated Circuit (IC) package and a plastic waveguide. The IC package includes a semiconductor chip; and an embedded antenna formed within a Redistribution Layer (RDL) coupled to the semiconductor chip, wherein the RDL is configured to transport a Radio Frequency (RF) signal between the semiconductor chip and the embedded antenna. The plastic waveguide is attached to the IC package and configured to transport the RF signal between the embedded antenna and outside of the IC package.
Abstract:
A method comprises providing a least one semiconductor component, wherein each of the at least one semiconductor component comprises: a semiconductor chip, wherein the semiconductor chip comprises a first main surface and a second main surface opposite the first main surface, and a sacrificial layer arranged above the opposite second main surface of the semiconductor chip. The method further comprises encapsulating the at least one semiconductor component with an encapsulation material. The method further comprises removing the sacrificial material, wherein above each of the at least one semiconductor chip a cutout is formed in the encapsulation material. The method further comprises arranging at least one lid above the at least one cutout, wherein a closed cavity is formed by the at least one cutout and the at least one lid above each of the at least one semiconductor chip.
Abstract:
An electronic device is disclosed. In one example, the electronic device includes a solder ball, a dielectric layer comprising an opening, and a redistribution layer (RDL) comprising an RDL pad connected with the solder ball. The RDL pad including at least one void, the void being disposed at least in partial in an area of the RDL pad laterally outside of the opening of the dielectric layer.
Abstract:
An electronic device is disclosed. In one example, the electronic device includes a solder ball, a dielectric layer comprising an opening, and a redistribution layer (RDL) comprising an RDL pad connected with the solder ball. The RDL pad including at least one void, the void being disposed at least in partial in an area of the RDL pad laterally outside of the opening of the dielectric layer.
Abstract:
A method for manufacturing an embedded chip package is provided. The method may include: forming electrically conductive lines over a substrate; placing the substrate next to a chip arrangement comprising a chip, the chip comprising one or more contact pads, wherein one or more of the electrically conductive lines are arranged proximate to a side wall of the chip; and forming one or more electrical interconnects over the chip arrangement to electrically connect at least one electrically conductive line to at least one contact pad.
Abstract:
A method of manufacturing a semiconductor device package includes placing a semiconductor chip on a carrier, covering the semiconductor chip with an encapsulation material to form an encapsulation body, providing a microwave component having at least one electrically conducting wall structure integrated in the encapsulation body, and forming an electrical interconnect configured to electrically couple the semiconductor chip and the microwave component.
Abstract:
A method for manufacturing an embedded chip package is provided. The method may include: forming electrically conductive lines over a substrate; placing the substrate next to a chip arrangement comprising a chip, the chip comprising one or more contact pads, wherein one or more of the electrically conductive lines are arranged proximate to a side wall of the chip; and forming one or more electrical interconnects over the chip arrangement to electrically connect at least one electrically conductive line to at least one contact pad.
Abstract:
A method of manufacturing an array of semiconductor device packages includes placing a plurality of semiconductor chips on a temporary carrier, covering the plurality of semiconductor chips with an encapsulation material to form an encapsulation body, providing a plurality of microwave components each including at least one electrically conducting wall structure integrated in the encapsulation body, forming a plurality of electrical interconnects each configured to electrically couple a semiconductor chip and a microwave component, and separating the encapsulation body into single semiconductor device packages each including a semiconductor chip, a microwave component and an electrical interconnect.