Abstract:
Embodiments of wireless communication devices and method for discontinuous reception (DRX) mode in RRC_IDLE state of wireless communication are generally described herein. Some of these embodiments describe a wireless communication device having processing circuitry arranged to determine to use an extended paging discontinuous reception (DRX) value to increase a paging cycle length. The wireless communication device may transmit a non-access stratum (NAS) message to the network, indicating that the wireless communication device desires to use the extended paging DRX value. The wireless communication device may receive a message from the network that includes an information element (IE) indicating whether the network supports the extended paging DRX value. Other methods and apparatuses are also described.
Abstract:
Embodiments of an eNodeB and method for Machine Type Communication in a Wireless Network are generally described herein. In some embodiments, a method performed by circuitry of an evolved Node B (eNodeB) can include receiving, by the eNodeB, a notification that a User Equipment (UE) is configured to be used for Machine Type Communication (MTC). The method can include determining whether the UE is in a Radio Resource Control Connected (RRC_Connected) state and determining whether the UE can enter a power saving mode. The method can include configuring the UE to change to an RRC Deep Idle mode, in response to determining that the UE is in the RRC_Connected state and the UE can enter the power saving mode.
Abstract:
Embodiments of an eNodeB and method for Machine Type Communication in a Wireless Network are generally described herein. In some embodiments, a method performed by circuitry of an evolved Node B (eNodeB) can include receiving, by the eNodeB, a notification that a User Equipment (UE) is configured to be used for Machine Type Communication (MTC). The method can include determining whether the UE is in a Radio Resource Control Connected (RRC_Connected) state and determining whether the UE can enter a power saving mode. The method can include configuring the UE to change to an RRC Deep Idle mode, in response to determining that the UE is in the RRC_Connected state and the UE can enter the power saving mode.
Abstract:
Embodiments of an Evolved Node-B (eNB) and methods for transition between idle and connected modes are disclosed herein. The eNB may receive uplink data packets from a User Equipment (UE) using a lightweight Radio Resource Control (RRC) connection between the eNB and the UE. The eNB may transmit an RRC connection release message to the UE to indicate a transition of the UE to an RRC idle mode for the RRC connection. The RRC connection release message may include an indicator of whether the UE is to store context information for the RRC connection. The eNB may further receive additional uplink data packets according to the stored context information using a lightweight RRC connection.
Abstract:
A user equipment (UE) is configured to receive, from a network, a first access control message and a second access control message. The first access control message corresponds to a first access control service, and the second access control message corresponds to a second access control service. The first and second access control messages include access control information for controlling access to the network for at least one application on the UE. The UE is also configured to determine a combined access level for the at least one application based on the first and second access control messages and to limit access to wireless communications for the at least one application based on the combined access level.
Abstract:
Embodiments of an eNodeB and method for small data transfer in a Wireless Network are generally described herein. A method performed by circuitry of a User Equipment (UE) can include determining, by the UE, whether the UE is configured to be used for Machine Type Communication (MTC). The method can include determining whether the UE has small data (SD) to transfer. The method can include configuring the UE to use a small data signaling radio bearer (SDSRB) to send the SD, in response to determining that the UE is configured to be used for MTC and the UE has SD to transfer. An evolved Node B can determine whether the UE is configured to be used for MTC, determine whether there is SD to transfer to the UE, wherein SD comprises data that has delay tolerance, and configure the UE to use a signaling bearer to send the SD.
Abstract:
Embodiments of a Mobility Management Entity (MME) to support packet-switched (PS) services in a network in accordance with Evolved Packet System (EPS) bearers are disclosed herein. The MME may receive, from a User Equipment (UE), an indicator of Machine Type Communication (MTC) operation, which may indicate that the UE operates as an MTC UE. The MME may, at least partly in response to a determination of UE inactivity on an EPS bearer, transmit a bearer release message for release of an S5/S8 bearer included in the EPS bearer. In some embodiments, the indicator of MTC operation may include a permission indicator from the UE for the release of the S5/S8 bearer. In some embodiments, the indicator of MTC operation may include an indicator of transmission of small blocks of data or transmission at an infrequent rate.
Abstract:
Embodiments of a User Equipment (UE) and method for selecting a Radio Resource Control (RRC) inactivity timer for a service operating in a wireless network are generally described herein. In some embodiments, the UE may be configured to operate in a 3GPP network in accordance with a Radio Resource Control (RRC) inactivity timer that controls RRC state transitions of the UE, and further in accordance with a Machine Type Communication (MTC) mode of operation. The UE may receive, from an Evolved Node-B (eNB), one or more messages that may include an RRC inactivity timer keep connected support value that indicates support of a keep connected mode. In some embodiments, when the UE operates in keep connected mode, the UE operates in an RRC connected state and is restricted from operating in other RRC states.
Abstract:
Apparatuses and methods for control of small data transmission by a user equipment (UE) are described herein. The UE may determine that data to be transmitted by the UE is small data if a size of the data is below a threshold. The UE may transmit a message indicating that the UE shall be transmitting small data responsive to determining that data to be transmitted by the UE is small data. The UE may receive a radio resource control (RRC) signal from an evolved Node B (eNodeB) that includes a logical channel identifier (LCID) of a small data radio bearer (SDRB) configured for transmission of small data. The UE may transmit small data on the SDRB subsequent to receiving the RRC signal from the eNodeB. The UE may refrain from transmitting other than small data on the SDRB. Other apparatuses and methods are described.
Abstract:
A user equipment (UE) is configured to receive, from a network, a first access control message and a second access control message. The first access control message corresponds to a first access control service, and the second access control message corresponds to a second access control service. The first and second access control messages include access control information for controlling access to the network for at least one application on the UE. The UE is also configured to determine a combined access level for the at least one application based on the first and second access control messages and to limit access to wireless communications for the at least one application based on the combined access level.