Abstract:
A technique relates to punchthrough stop (PTS) doping in bulk fin field effect transistors. Fins are formed on a substrate, and each pair of the fins has a fin pitch. Each of the fins has an undoped fin channel and a punchthrough stop doping region underneath the undoped fin channel. A narrow shallow trench isolation trench is formed between the fin pitch of the fins. A wide shallow trench isolation trench is formed at an outside edge of the fins. A doped layer fills the narrow shallow trench isolation trench and the wide shallow trench isolation trench. A vertical thickness of the doped layer in the narrow shallow trench isolation trench is greater than a vertical thickness of the wide shallow trench isolation trench.
Abstract:
A multi-layer stacked semiconductor device includes a first integrated circuit device and a bonding insulator layer formed upon the first integrated circuit device. The bonding insulator layer includes an insulating material layer and an etch stop layer. The semiconductor device also includes a second integrated circuit device formed over the first integrated circuit device in a stacked configuration. The semiconductor device also includes a bonding insulator layer formed between the second integrated circuit device and the insulating material layer. The insulating material layer and the bonding insulator layer are bonded adjacent to one another.
Abstract:
Handler wafers and methods of handling a wafer include positioning a handler, which is attached to a wafer by a bonding layer that comprises a debonding layer, an optical enhancement layer, and an anti-reflection layer. The handler is debonded from the wafer using a laser that emits laser energy at a wavelength that is absorbed by the debonding layer and that is confined to the debonding layer by the optical enhancement layer, such that the material of the debonding layer ablates when exposed to the laser energy to release the wafer.
Abstract:
Embodiments of the present invention are directed to processing methods and resulting structures that leverage wafer bonding techniques to provide stacked field effect transistors (SFETs) with high-quality N/P junction isolation. In a non-limiting embodiment of the invention, a first semiconductor structure is formed on a first wafer and a second semiconductor structure is formed on a second wafer. The first wafer is positioned with respect to the second wafer such that a top surface of the first semiconductor structure is directly facing a top surface of the second semiconductor structure. A bonding layer is formed between the top surface of the first semiconductor structure and the top surface of the second semiconductor structure and the first wafer is bonded to the second wafer at a first temperature. The device is annealed at a second temperature to cure the bonding layer. The anneal temperature is greater than the bonding temperature.
Abstract:
A VFET device with a dual top spacer to prevent source/drain-to-gate short, and techniques for formation thereof are provided. In one aspect, a method of forming a VFET device includes: etching vertical fin channels in a substrate; forming a bottom source and drain in the substrate beneath the vertical fin channels; forming a bottom spacer on the bottom source and drain; depositing a gate dielectric and gate conductor onto the vertical fin channels; recessing the gate dielectric and gate conductor to expose tops of the vertical fin channels; selectively forming dielectric spacers on end portions of the gate dielectric and gate conductor adjacent to the tops of the vertical fin channels; depositing an encapsulation layer onto the vertical fin channels; recessing the encapsulation layer with the dielectric spacers serving as an etch stop; and forming top source and drains. A VFET device formed using the present techniques is also provided.
Abstract:
An integrated semiconductor device having a substrate and a vertical field-effect transistor (FET) disposed on the substrate. The vertical FET includes a fin and a bottom spacer. The bottom spacer further includes a first spacer layer and a second spacer layer formed on top of the first spacer layer. The bottom spacer provides for a symmetrical straight alignment at a bottom junction between the bottom spacer and the fin.
Abstract:
A method of forming a fin field effect transistor complementary metal oxide semiconductor (CMOS) device is provided. The method includes forming a plurality of multilayer fin templates and vertical fins on a substrate, wherein one multilayer fin template is on each of the plurality of vertical fins. The method further includes forming a dummy gate layer on the substrate, the plurality of vertical fins, and the multilayer fin templates, and removing a portion of the dummy gate layer from the substrate from between adjacent pairs of the vertical fins. The method further includes forming a fill layer between adjacent pairs of the vertical fins. The method further includes removing a portion of the dummy gate layer from between the fill layer and the vertical fins, and forming a sidewall spacer layer on the fill layer and between the fill layer and the vertical fins.
Abstract:
A method of forming a fin field effect transistor complementary metal oxide semiconductor (CMOS) device is provided. The method includes forming a plurality of multilayer fin templates and vertical fins on a substrate, wherein one multilayer fin template is on each of the plurality of vertical fins. The method further includes forming a dummy gate layer on the substrate, the plurality of vertical fins, and the multilayer fin templates, and removing a portion of the dummy gate layer from the substrate from between adjacent pairs of the vertical fins. The method further includes forming a fill layer between adjacent pairs of the vertical fins. The method further includes removing a portion of the dummy gate layer from between the fill layer and the vertical fins, and forming a sidewall spacer layer on the fill layer and between the fill layer and the vertical fins.
Abstract:
A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
Abstract:
According to embodiments of the present invention, a method of forming a self-aligned contact includes depositing an etch-stop liner on a surface of a gate cap and a contact region. A dielectric oxide layer is deposited onto the etch-stop layer. The dielectric oxide layer and the etch-stop liner are removed in a region above the contact region to form a removed region. A contact is deposited in the etched region.