摘要:
A spread spectrum clock generator (SSCG) and method of generating a spread spectrum clock (SSC) signal, in which the SSCG may include a controller outputting a given modulation voltage signal based on a difference between an average frequency of a first feedback signal and a comparison frequency signal input thereto, or based on comparison in total phase variations between a second feedback signal and the comparison frequency signal, and a sub-system for generating a first control voltage as a function of an input reference frequency signal and a second feedback signal input thereto. An adder may add the first control voltage signal and the modulation voltage signal to generate a second control voltage signal, and a voltage control oscillator (VCO) may generate the SSC signal based on the second control voltage signal.
摘要:
Phase change memory devices and methods of making phase changeable memory devices including a heating electrode disposed on a substrate are provided. The heating electrode includes an electrode hole in the heating electrode. A phase change material pattern is provided in the electrode hole and contacts a sidewall of the electrode hole. In some embodiments, the electrode hole extends through the heating electrode. In some embodiments, the phase changeable material pattern only contacts the electrode at a sidewall of the electrode hole.
摘要:
A method and apparatus for configuring a channel node tree in an OFDMA wireless communication system are provided, in which as many DRCH nodes as the number of DRCHs used for a frame are configured at base nodes, as many BRCHs as the number of DRCHs are selected from among BRCHs used for the frame, BRCH nodes with unselected BRCHs are configured at base nodes, and upper nodes are configured using the base nodes corresponding to the DRCH nodes and the BRCH nodes.
摘要:
A phase change memory device includes a mold layer disposed on a substrate, a heating electrode, a filling insulation pattern and a phase change material pattern. The heating electrode is disposed in an opening exposing the substrate through the mold layer. The heating electrode is formed in a substantially cylindrical shape, having its sidewalls conformally disposed on the lower inner walls of the opening. The filling insulation pattern fills an empty region surrounded by the sidewalls of the heating electrode. The phase change material pattern is disposed on the mold layer and downwardly extended to fill the empty part of the opening. The phase change material pattern contacts the top surfaces of the sidewalls of the heating electrode.
摘要:
In an embodiment, a phase change memory device includes a semiconductor substrate of a first conductivity type and a first interlayer insulating layer disposed on the semiconductor substrate. A hole penetrates the first interlayer insulating layer. A first and a second semiconductor pattern are sequentially stacked in a lower region of the hole. A cell electrode is provided on the second semiconductor pattern. The cell electrode has a lower surface than a top surface of the first interlayer insulating layer. A confined phase change material pattern fills the hole on the cell electrode. An upper electrode is disposed on the phase change material pattern. The phase change material pattern in the hole is self-aligned with the first and second semiconductor patterns by the hole. A method of fabricating the phase change memory device is also provided.
摘要:
Methods are provided for operating a magnetic random access memory device including a memory cell having a magnetic tunnel junction structure on a substrate. In particular, a writing current pulse may be provided through the magnetic tunnel junction structure, and a writing magnetic field pulse may be provided through the magnetic tunnel junction structure. In addition, at least a portion of the writing magnetic field pulse may be overlapping in time with respect to at least a portion of the writing current pulse, and at least a portion of the writing current pulse and/or at least a portion of the writing magnetic field pulse may be non-overlapping in time with respect to the other. Related devices are also discussed.
摘要:
A semiconductor device includes at least one phase-change pattern disposed on a semiconductor substrate. A planarized capping layer, a planarized protecting layer, and a planarized insulating layer are sequentially stacked to surround sidewalls of the at least one phase-change pattern. An interconnection layer pattern is disposed on the planarized capping layer, the planarized protecting layer, and the planarized insulating layer. The interconnection layer pattern is in contact with the phase-change pattern.
摘要:
The present invention relates to a β-catenin oligonucleotide microchip for detecting mutation in the mutational hot spot regions of β-catenin gene, a manufacturing process thereof and a method for detecting the β-catenin mutation employing same, wherein specific oligonucleotides are selectively designed to detect various missense mutations and in-frame deletion at the mutational hot spots of β-catenin gene. The β-catenin oligo chip of the present invention can be used in studies to detect β-catenin mutations and unravel the signal transduction mechanism and tumorigenesis related to β-catenin gene.
摘要:
Phase change Random Access Memory (PRAM) devices include a substrate and a phase change layer pattern on the substrate. The phase change layer pattern includes a sharp tip and at least one wall that extends from the sharp tip in a direction away from the substrate. At least one contact hole node is provided that contacts the phase change material pattern adjacent the sharp tip.
摘要:
Phase change memory devices and methods of making phase changeable memory devices including a heating electrode disposed on a substrate are provided. The heating electrode includes an electrode hole in the heating electrode. A phase change material pattern is provided in the electrode hole and contacts a sidewall of the electrode hole. In some embodiments, the electrode hole extends through the heating electrode. In some embodiments, the phase changeable material pattern only contacts the electrode at a sidewall of the electrode hole