Abstract:
Methods and apparatus in which pressure provides precise control over the timing and preferably synchronization of chemical reactions, particularly enzymatic reactions.
Abstract:
A method of hybridizing a first nucleic acid to a second nucleic acid at least partially complementary to the first nucleic acid by (1) providing a sample vessel and pressure controller for the vessel; and (2) contacting the first and second nucleic acids within the vessel at a pressure above ambient pressure that is effective to enhance hybridization of the first and second nucleic acids.
Abstract:
Method and apparatus for controlling acoustic treatment of a sample including a liquid. A processing volume in which the sample is acoustically treated may be controlled, e.g., by positioning a suitable element so as to reduce and/or eliminate a headspace at a sample/gas interface. An interaction between the acoustic energy and the sample may be controlled, e.g., by using an energy director positioned at least partially in the sample that helps to reduce splashing or other sample ejection that would otherwise occur.
Abstract:
Method and apparatus for holding and/or treating a sample material. A sample material may be positioned in a vessel between top and bottom flexible films where the flexible films are connected together by a substantially rigid support structure that surrounds the sample material. A crushing force may be applied to the sample material via the top and bottom flexible films, e.g., to pulverize the sample at cryogenic temperatures. A sample holder may have two vessels, one arranged for applying a crushing force to a first sample and another for holding a sample for other processing, such as a histology analysis.
Abstract:
The invention is based on the discovery that hyperbaric, hydrostatic pressure reversibly alters the partitioning of biomolecules between certain adsorbed and solvated phases relative to partitioning at ambient pressure. The new methods and devices disclosed herein make use of this discovery for highly selective and efficient, low salt isolation and purification of nucleic acids from a broad range of sample types, including forensic samples, blood and other body fluids, and cultured cells. In one embodiment, the invention features a pressure-modulation apparatus. The apparatus includes an electrode array system having at least two (i.e., two, three, four, or more) electrodes; and a conduit interconnecting the electrodes. The conduit contains an electrically conductive fluid in contact with a phase positioned in a pressure chamber. The phase can be, for example, a binding medium or stationary phase.
Abstract:
The invention is based on the discovery that the sequence of monomers in a polymeric biomolecule can be determined in a self-contained, high pressure reaction and detection apparatus, without the need for fluid flow into or out from the apparatus. The pressure is used to control the activity of enzymes that digest the polymeric biomolecule to yield the individual monomers in the sequence in which they existed in the polymer. High pressures modulate enzyme kinetics by reversibly inhibiting those enzymatic processes which result in a higher average activation volume, when compared to the ground state, and reversibly accelerating those processes which have lower activation volumes than the ground state. Modulating the pressure allows the experimenter to precisely control the activity of the enzyme. Conditions can be found, for example, where the enzyme removes only one monomer (e.g., a nucleotide or amino acid) from the biomolecule before the pressure is again raised to a prohibitive level. The identity of the single released nucleotide or amino acid can be determined using a detector that is in communication with a probe in the detection zone within the reaction vessel.
Abstract:
The invention is based on the discovery that pressure-induced changes in the free ion activity of a solution can be used to reversibly modulate the rate or the equilibrium position of chemical reactions, including catalytic reactions and associating/dissociating reactions. Pressure-induced changes in free-ion activity can also be used to improve separation processes.
Abstract:
The invention is based on the discovery that hyperbaric, hydrostatic pressure reversibly alters the partitioning of nucleic acids between certain adsorbed and solvated phases relative to partitioning at ambient pressure. The new methods and devices disclosed herein make use of this discovery for highly selective and efficient, low salt isolation and purification of nucleic acids from a broad range of sample types, including forensic samples, blood and other body fluids, and cultured cells.
Abstract:
Systems and methods include processing devices used to fragment nucleic acids to average nucleic acid sizes ranging from between about 5 kbp and about 20 kbp. A processing device may include an inlet portion and a channel upstream from a shearing region arranged so that a relatively constant pressure is established and maintained (e.g., a pressure that changes by less than about 40%) at an entrance of the shearing region during a majority of sample flow through the shearing region. In some embodiments, after forcing the sample through the shearing region once, the processing device may be taken out of the centrifuge, inverted and placed back into the centrifuge so that the sample is forced through the shearing region again.
Abstract:
Methods and systems for acoustically treating material using a continuous process in which material may be caused to flow in a continuous or intermittent fashion into/out of an acoustic treatment chamber where the material is exposed to focused acoustic energy. The methods and systems may be arranged to permit continuous processing for extended periods while an acoustic energy source operates at a relatively high power output. Treatment chambers may include features such as an acoustic window, a heat exchanger, inlet/outlet flow arrangements, an inspection window, insert elements that define a treatment volume size or shape, etc. Treatment system configurations relating to arrangements of a treatment chamber relative to an acoustic source and coupling medium, material flow paths, and others are provided.