摘要:
A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
摘要:
A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
摘要:
A spin transfer oscillator (STO) structure is disclosed that includes two assist layers with perpendicular magnetic anisotropy (PMA) to enable a field generation layer (FGL) to achieve an oscillation state at lower current density for MAMR applications. In one embodiment, the STO is formed between a main pole and write shield and the FGL has a synthetic anti-ferromagnetic structure. The STO configuration may be represented by seed layer/spin injection layer (SIL)/spacer/PMA layer 1/FGL/spacer/PMA layer 2/capping layer. The spacer may be Cu for giant magnetoresistive (GMR) devices or a metal oxide for tunneling magnetoresistive (TMR) devices. Alternatively, the FGL is a single ferromagnetic layer and the second PMA assist layer has a synthetic structure including two PMA layers with magnetic moment in opposite directions in a seed layer/SIL/spacer/PMA assist 1/FGL/spacer/PMA assist 2/capping layer configuration. SIL and PMA assist layers are laminates of (CoFe/Ni)x or the like.
摘要:
A spin torque oscillator is described in which the conventional Field Generation Layer (FGL) is replaced by a bilayer, one of whose members exhibits perpendicular magnetic anisotropy while the other exhibits conventional in-plane anisotropy. Provided the layer with the perpendicular anisotropy is the one that is closest to the spacer layer, the device is able to generate microwaves at current densities as low as 1×108 A/cm2.
摘要翻译:描述了一种自旋扭矩振荡器,其中常规的场产生层(FGL)由双层代替,其中一个构件呈现垂直的磁各向异性,而另一个表现出常规的面内各向异性。 如果具有垂直各向异性的层是最接近间隔层的层,该器件能够产生低至1×108A / cm 2的电流密度的微波。
摘要:
Perpendicular magnetic anisotropy and Hc are enhanced in magnetic devices with a Ta/M1/M2 seed layer where M1 is preferably Ti, and M2 is preferably Cu, and including an overlying (Co/Ni)X multilayer (x is 5 to 50) that is deposited with ultra high Ar pressure of >100 sccm to minimize impinging energy that could damage (Co/Ni)X interfaces. In one'embodiment, the seed layer is subjected to one or both of a low power plasma treatment and natural oxidation process to form a more uniform interface with the (Co/Ni)X multilayer. Furthermore, an oxygen surfactant layer may be formed at one or more interfaces between adjoining (Co/Ni)X layers in the multilayer stack. Annealing at temperatures between 180° C. and 400° C. also increases Hc but the upper limit depends on whether the magnetic device is MAMR, MRAM, a hard bias structure, or a perpendicular magnetic medium.
摘要:
A spin valve structure for a spintronic device is disclosed and includes a composite seed layer made of at least Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni)x multilayer. The (Co/Ni)x multilayer is deposited by a low power and high Ar pressure process to avoid damaging Co/Ni interfaces and thereby preserving PMA. As a result, only a thin seed layer is required. PMA is maintained even after annealing at 220° C. for 10 hours. Examples of GMR and TMR spin valves are described and may be incorporated in spin transfer oscillators and spin transfer MRAMs. The free layer is preferably made of a FeCo alloy including at least one of Al, Ge, Si, Ga, B, C, Se, Sn, or a Heusler alloy, or a half Heusler alloy to provide high spin polarization and a low magnetic damping coefficient.
摘要:
A spin transfer (torque) oscillator (STO) with a non-magnetic spacer formed between a spin injection layer (SIL) and a field generation layer (FGL), and with an interfacial layer comprised of Fe(100-V)CoV where v is from 5 to 100 atomic % formed between the SIL and non-magnetic spacer is disclosed. A composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture is used to enhance perpendicular magnetic anisotropy (PMA) in the STO device. The interfacial layer quenches SIL oscillations and thereby stabilizes the SIL against FGL oscillations. The interfacial layer preferably has a thickness from 5 to 50 Angstroms and enhances amplitude (dR/R) in the STO device. The STO device may have a top SIL or bottom SIL configuration. The SIL is typically a laminated structure such as (Co/Ni)X where x is between 5 and 50.
摘要:
A spin transfer oscillator (STO) structure is disclosed that includes two assist layers with perpendicular magnetic anisotropy (PMA) to enable a field generation layer (FGL) to achieve an oscillation state at lower current density for MAMR applications. In one embodiment, the STO is formed between a main pole and write shield and the FGL has a synthetic anti-ferromagnetic structure. The STO configuration may be represented by seed layer/spin injection layer (SIL)/spacer/PMA layer 1/FGL/spacer/PMA layer 2/capping layer. The spacer may be Cu for giant magnetoresistive (GMR) devices or a metal oxide for tunneling magnetoresistive (TMR) devices. Alternatively, the FGL is a single ferromagnetic layer and the second PMA assist layer has a synthetic structure including two PMA layers with magnetic moment in opposite directions in a seed layer/SIL/spacer/PMA assist 1/FGL/spacer/PMA assist 2/capping layer configuration. SIL and PMA assist layers are laminates of (CoFe/Ni)x or the like.
摘要:
A spin transfer oscillator with a seed/SIL/spacer/FGL/capping configuration is disclosed with a composite seed layer made of Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (A1/A2)X laminated spin injection layer (SIL). Field generation layer (FGL) is made of a high Bs material such FeCo. Alternatively, the STO has a seed/FGL/spacer/SIL/capping configuration. The SIL may include a FeCo layer that is exchanged coupled with the (A1/A2)X laminate (x is 5 to 50) to improve robustness. The FGL may include an (A1/A2)Y laminate (y=5 to 30) exchange coupled with the high Bs layer to enable easier oscillations. A1 may be one of Co, CoFe, or CoFeR where R is a metal, and A2 is one of Ni, NiCo, or NiFe. The STO may be formed between a main pole and trailing shield in a write head.
摘要:
Disclosed is a method for preparing self-dispersing nano carbon black based on a thiol-ene click reaction. A sol-gel technique is used to graft a coupling agent containing a carbon-carbon double bond onto the surface of the carbon black, and a functional molecular chain is grafted onto the surface of the carbon black by a thiol-ene click reaction with a mercapto compound. The self-dispersing nano carbon black is obtained after centrifugation, washing and drying. The method is simple and easy to operate, has a high grafting rate, and can prepare self-dispersing nano carbon black adaptable to different systems by selecting mercapto compounds with different functional groups.