Abstract:
A method and an apparatus utilized for thermal processing of substrates during semiconductor manufacturing. The method includes heating the substrate to a predetermined temperature using a heating assembly, cooling the substrate to the predetermined temperature using a cooling assembly located such that a thermal conductance region is provided between the heating and cooling assemblies, and adjusting a thermal conductance of the thermal conductance region to aid in heating and cooling of the substrate. The apparatus includes a heating assembly, a cooling assembly located such that a thermal conductance region is provided between the heating and cooling assemblies, and a structure or configuration for adjusting a thermal conductance of the thermal conductance region.
Abstract:
A method and system are provided for monitoring material buildup on system components in a plasma processing system. The system components contain emitters that are capable of producing characteristic fluorescent light emission when exposed to a plasma. The method utilizes optical emission to monitor fluorescent light emission from the emitters for determining system component status. The method can evaluate material buildup on system components in a plasma, by monitoring fluorescent light emission from the emitters. Consumable system components that can be monitored using the method include rings, shields, electrodes, baffles, and liners.
Abstract:
A method of depositing a thin film on a substrate in a deposition system is described. The method includes disposing a gas heating device comprising a plurality of heating element zones in a deposition system, and independently controlling a temperature of each of the plurality of heating element zones, wherein each of the plurality of heating element zones having one or more resistive heating elements. Additionally, the method includes providing a substrate on a substrate holder in the deposition system, wherein the substrate holder has one or more temperature control zones. The method further includes providing a film forming composition to the gas heating device coupled to the deposition system, pyrolyzing one or more constituents of the film forming composition using the gas heating device, and introducing the film forming composition to the substrate in the deposition system to deposit a thin film on the substrate.
Abstract:
A thermally zoned substrate holder including a substantially cylindrical base having top and bottom surfaces configured to support a substrate. A plurality of temperature control elements are disposed within the base. An insulator thermally separates the temperature control elements. The insulator is made from an insulting material having a lower coefficient of thermal conductivity than the base (e.g., a gas- or vacuum-filled chamber).
Abstract:
A method, system and computer readable medium for analyzing a process performed by a semiconductor processing tool. The method includes inputting data relating to a process performed by the semiconductor processing tool, and inputting a first principles physical model relating to the semiconductor processing tool. First principles simulation is performed using the input data and the physical model to provide a first principles simulation result; and the first principles simulation result is used to determine a fault in the process performed by the semiconductor processing tool.
Abstract:
A method, system and computer readable medium for controlling a process performed by a semiconductor processing tool includes inputting data relating to a process performed by the semiconductor processing tool, and inputting a first principles physical model relating to the semiconductor processing tool. First principles simulation is then performed using the input data and the physical model to provide a first principles simulation result, and the first principles simulation result is used to control the process performed by the semiconductor processing tool.
Abstract:
A processing system for performing atomic layer deposition (ALD) including a process chamber, a substrate holder provided within the process chamber, and a gas injection system configured to supply a first process gas and a second process gas to the process chamber. The gas injection system is configured to introduce the first process gas and the second process gas to the processing chamber at a first location and a second location, wherein at least one of the first process gas and the second process gas is alternatingly and sequentially introduced between the first location and the second location.
Abstract:
A focus ring configured to be coupled to a substrate holder comprises a first surface exposed to a process; a second surface, opposite the first surface, for coupling to an upper surface of the substrate holder; an inner radial edge for facing a periphery of a substrate; and an outer radial edge. The second surface further comprises one or more contact features, each of which is configured to mate with one or more receiving features formed within the upper surface of the substrate holder. The focus ring can further comprise a clamping feature for mechanically clamping the focus ring to the substrate holder. Furthermore, a gas can be supplied to the contact space residing between the one or more contact features on the focus ring and the one or more receiving features on the substrate holder.
Abstract:
A thermally zoned substrate holder including a substantially cylindrical base having top and bottom surfaces configured to support a substrate. A plurality of temperature control elements are disposed within the base. An insulator thermally separates the temperature control elements. The insulator is made from an insulting material having a lower coefficient of thermal conductivity than the base (e.g., a gas-or vacuum-filled chamber).
Abstract:
In a method for performing a plasma-assisted treatment on a substrate in a reactor chamber by: introducing at least one process gas into the reactor chamber; and creating a plasma within the reactor chamber by establishing an RF electromagnetic field within the chamber and allowing the field to interact with the process gas, the electromagnetic field is controlled to have an energy level which varies cyclically between at least two values each sufficient to maintain the plasma, such that each energy level value is associated with performance of a respectively different treatment process on the substrate.