Abstract:
A memory device has a plurality of individually erasable blocks of memory cells and a controller configured to configure a first block of the plurality of blocks of memory cells in a first configuration comprising one or more groups of overhead data memory cells, to configure a second block of the plurality of blocks of memory cells in a second configuration comprising a group of user data memory cells and a group of overhead data memory cells, and to configure a third block of the plurality of blocks of memory cells in a third configuration comprising only a group of user data memory cells. The group of overhead data memory cells of the second block of memory cells has a different storage capacity than at least one group of overhead data memory cells of the one or more groups of overhead data memory cells of the first block.
Abstract:
A memory device has a plurality of individually erasable blocks of memory cells and a controller configured to configure a first block of memory cells in a first configuration comprising one or more groups of overhead data memory cells, and to configure a second block of memory cells in a second configuration comprising one or more groups of user data memory cells and at least one group of overhead data memory cells. The first configuration is different than the second configuration. At least one group of overhead data memory cells of the second block of memory cells comprises a different storage capacity than at least one group of overhead data memory cells of the first block of memory cells.
Abstract:
Apparatus and methods store data in a non-volatile solid state memory device according to a rate-compatible code, such as a rate-compatible convolutional code (RPCC). An example of such a memory device is a flash memory device. Data can initially be block encoded for error correction and detection. The block-coded data can be further convolutionally encoded. Convolutional-coded data can be punctured and stored in the memory device. The puncturing decreases the amount of memory used to store the data. Depending on conditions, the amount of puncturing can vary from no puncturing to a relatively high amount of puncturing to vary the amount of additional error correction provided and memory used. The punctured data can be decoded when data is to be read from the memory device.
Abstract:
The present disclosure includes methods, devices, and systems for controlling a memory device. One method for controlling a memory device embodiment includes storing device class dependent information and a command in one or more of host system memory and host controller memory, setting a pointer to the command in a register in a host controller, directing access to the one or more of host system memory and host controller memory with the memory device via the host controller; and executing the command with the memory device.
Abstract:
Apparatus and methods store data in a non-volatile solid state memory device according to a rate-compatible code, such as a rate-compatible convolutional code (RPCC). An example of such a memory device is a flash memory device. Data can initially be block encoded for error correction and detection. The block-coded data can be further convolutionally encoded. Convolutional-coded data can be punctured and stored in the memory device. The puncturing decreases the amount of memory used to store the data. Depending on conditions, the amount of puncturing can vary from no puncturing to a relatively high amount of puncturing to vary the amount of additional error correction provided and memory used. The punctured data can be decoded when data is to be read from the memory device.
Abstract:
A memory device has an array of memory cells and a controller coupled to the array of memory cells. The controller is configured to determine a program window after a portion of a particular programing operation performed on the memory device is performed and before a subsequent portion of the particular programing operation performed on the memory device is performed. The controller is configured to determine the program window responsive to an amount of program disturb experienced by a particular state of a memory cell. The controller is configured to perform the subsequent portion of the particular programing operation performed on the memory device using the determined program window.
Abstract:
Apparatus and methods store data in a non-volatile solid state memory device according to a rate-compatible code, such as a rate-compatible convolutional code (RPCC). An example of such a memory device is a flash memory device. Data can initially be block encoded for error correction and detection. The block-coded data can be further convolutionally encoded. Convolutional-coded data can be punctured and stored in the memory device. The puncturing decreases the amount of memory used to store the data. Depending on conditions, the amount of puncturing can vary from no puncturing to a relatively high amount of puncturing to vary the amount of additional error correction provided and memory used. The punctured data can be decoded when data is to be read from the memory device.
Abstract:
The present disclosure includes methods, devices, and systems for object oriented memory in solid state devices. One embodiment of a method for object oriented memory in solid state devices includes accessing a defined set of data as a single object in an atomic operation manner, where the accessing is from a source other than a host. The embodiment also includes storing the defined set of data as the single object in a number of solid state memory blocks as formatted by a control component of a solid state device that includes the number of solid state memory blocks.
Abstract:
In an embodiment, a defective memory block is replaced with a non-defective memory block, and a voltage-delay correction is applied to the non-defective memory block that replaces the defective memory block based on the actual location of the non-defective memory block.
Abstract:
The present disclosure includes methods, devices, and systems for dealing with threshold voltage change in memory devices. A number of embodiments include an array of memory cells and control circuitry having sense circuitry coupled to the array. The control circuitry is configured to determine changes in threshold voltages (Vts) associated with the memory cells without using a reference cell, and adjust the sense circuitry based on the determined changes and without using a reference cell.