摘要:
The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. A first oxide layer is formed in core and I/O regions of a semiconductor device (506). The first oxide layer is removed (508) from the core region of the device. A high-k dielectric layer is formed (510) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions of the core and I/O regions. A second oxide layer is formed (516) within NMOS regions of the core and I/O regions and a nitridation process is performed (518) that nitrides the second oxide layer and the high-k dielectric layer.
摘要:
The present invention pertains to forming a transistor in the absence of hydrogen, or in the presence of a significantly reduced amount of hydrogen. In this manner, a high-k material can be utilized to form a gate dielectric layer in the transistor and facilitate device scaling while mitigating defects that can be introduced into the high-k material by the presence of hydrogen and/or hydrogen containing compounds.
摘要:
Methods and systems are disclosed that facilitate semiconductor fabrication by fabricating transistor devices having gate dielectrics with selectable thicknesses in different regions of semiconductor devices. The thicknesses correspond to operating voltages of the corresponding transistor devices. Furthermore, the present invention also provides systems and methods that can fabricate the gate dielectrics with high-k dielectric material, which allows a thicker gate dielectric than conventional silicon dioxide.
摘要:
Methods are disclosed for treating deposited gate dielectric materials, in which the deposited dielectric is subjected to one or more non-oxidizing anneals to densify the material, one or more oxidizing anneals to mitigate material defects, and to a nitridation process to introduce nitrogen into the gate dielectric. The annealing may be performed before and/or after the nitridation to mitigate deposition and/or nitridation defects and to densify the material while mitigating formation of unwanted low dielectric constant oxides at the interface between the gate dielectric and the semiconductor substrate.
摘要:
A system and method for manufacturing semiconductor devices with dielectric layers having a dielectric constant greater than silicon dioxide includes depositing a dielectric layer on a substrate and subjecting the dielectric layer to a plasma to reduce top surface roughness in the dielectric layer.
摘要:
Methods are disclosed that fabricating semiconductor devices with high-k dielectric layers. The invention removes portions of deposited high-k dielectric layers not below gates and covers exposed portions (e.g., sidewalls) of high-k dielectric layers during fabrication with an encapsulation layer, which mitigates defects in the high-k dielectric layers and contamination of process tools. The encapsulation layer can also be employed as an etch stop layer and, at least partially, in comprising sidewall spacers. As a result, a semiconductor device can be fabricated with a substantially uniform equivalent oxide thickness.
摘要:
Fabricating a semiconductor includes depositing a metal layer outwardly from a dielectric layer and forming a mask layer outwardly from a first portion of the metal layer. Atoms are incorporated into an exposed second portion of the metal layer to form a composition-altered portion of the metal layer. The mask layer is removed from the first portion of the metal layer and a barrier layer is deposited outwardly from the metal layer. A poly-Si layer is deposited outwardly from the barrier layer to form a semiconductor layer, where the barrier layer substantially prevents reaction of the metal layer with the poly-Si layer. The semiconductor layer is etched to form gate stacks, where each gate stack operates according to one of a plurality of work functions.
摘要:
Semiconductor devices and fabrication methods are presented, in which transistor gate structures are created using doped metal silicide materials. Upper and lower metal silicides are formed above a gate dielectric, wherein the lower metal silicide is doped with n-type impurities for NMOS gates and with p-type impurities for PMOS gates, and wherein a silicon may, but need not be formed between the upper and lower metal silicides. The lower metal silicide can be deposited directly, or may be formed through reaction of deposited metal and poly-silicon, and the lower silicide can be doped by diffusion or implantation, before or after gate patterning.
摘要:
Semiconductor devices and fabrication methods are presented, in which transistor gate structures are created using doped metal silicide materials. Upper and lower metal silicides are formed above a gate dielectric, wherein the lower metal silicide is doped with n-type impurities for NMOS gates and with p-type impurities for PMOS gates, and wherein a silicon may, but need not be formed between the upper and lower metal silicides. The lower metal silicide can be deposited directly, or may be formed through reaction of deposited metal and poly-silicon, and the lower silicide can be doped by diffusion or implantation, before or after gate patterning.