摘要:
The semiconductor layer structure includes a superlattice composed of stacked layers of III-V compound semiconductors of a first and at least one second type. Adjacent layers of different types in the superlattice differ in composition with respect to at least one element, at least two layers of the same type have a different content of the at least one element, the content of the at least one element is graded within a layer of the superlattice, and the layers of the superlattice contain dopants in predefined concentrations, with the superlattice comprising layers that are doped with different dopants. In this way, the electrical, optical and epitaxial properties of the superlattice can be adapted in the best possible manner to given requirements, particularly epitaxial constraints.
摘要:
A method for laterally dividing a semiconductor wafer (1) comprises the method steps of: providing a growth substrate (2); epitaxially growing a semiconductor layer sequence (3), which comprises a functional semiconductor layer (5), onto the growth substrate (2); applying a mask layer (10) to partial regions of the semiconductor layer sequence (3) in order to produce masked regions (11) and unmasked regions (12); implanting ions through the unmasked regions (12) in order to produce implantation regions (13) in the semiconductor wafer (1); and dividing the semiconductor wafer (1) along the implantation regions (13), wherein the growth substrate (2) or at least one part of the growth substrate (2) is separated from the semiconductor wafer.
摘要:
The semiconductor layer structure includes a superlattice (9) composed of stacked layers (9a, 9b) of III-V compound semiconductors of a first (a) and at least one second type (b). Adjacent layers of different types in the superlattice (9) differ in composition with respect to at least one element, at least two layers of the same type have a different content (cAl, cIn) of the at least one element, the content (cAl, cIn) of the at least one element is graded within a layer (9a, 9b) of the superlattice (9), and the layers (9a, 9b) of the superlattice contain dopants in predefined concentrations, with the superlattice (9) comprising layers (9a, 9b) that are doped with different dopants. In this way, the electrical, optical and epitaxial properties of the superlattice (9) can be adapted in the best possible manner to given requirements, particularly epitaxial constraints.
摘要:
What is specified is an edge emitting semiconductor laser chip comprising a carrier substrate (1), an interlayer (2) promoting adhesion between the carrier substrate (1) and a component structure (50) of the edge emitting semiconductor laser chip, and the component structure (50) comprising an active zone (5) provided for generating radiation.
摘要:
A laser light source comprises, in particular, a semiconductor layer sequence (10) having an active region (45) and a radiation coupling-out area (12) having a first partial region (121) and a second partial region (122) different than the latter, and a filter structure (5), wherein the active region (45) generates, during operation, coherent first electromagnetic radiation (51) having a first wavelength range and incoherent second electromagnetic radiation (52) having a second wavelength range, the coherent first electromagnetic radiation (51) is emitted by the first partial region (121) along an emission direction (90), the incoherent second electromagnetic radiation (52) is emitted by the first partial region (121) and by the second partial region (122), the second wavelength range comprises the first wavelength range, and the filter structure (5) at least partly attenuates the incoherent second electromagnetic radiation (52) emitted by the active region along the emission direction (90).
摘要:
In at least one embodiment of the light source (1), the latter includes at least one semiconductor laser (2), which is designed to emit a primary radiation (P) of a wavelength of between 360 nm and 485 nm inclusive. Furthermore, the light source (1) comprises at least one conversion medium (3), which is arranged downstream of the semiconductor laser (2) and is designed to convert at least part of the primary radiation (P) into secondary radiation (S) of a different, greater wavelength than the primary radiation (P). The radiation (R) emitted by the light source (1) here displays an optical coherence length which amounts to at most 50 μm.
摘要:
A laser light source comprises, in particular, a semiconductor layer sequence (10) having an active region (45) and a radiation coupling-out area (12) having a first partial region (121) and a second partial region (122) different than the latter, and a filter structure (5), wherein the active region (45) generates, during operation, coherent first electromagnetic radiation (51) having a first wavelength range and incoherent second electromagnetic radiation (52) having a second wavelength range, the coherent first electromagnetic radiation (51) is emitted by the first partial region (121) along an emission direction (90), the incoherent second electromagnetic radiation (52) is emitted by the first partial region (121) and by the second partial region (122), the second wavelength range comprises the first wavelength range, and the filter structure (5) at least partly attenuates the incoherent second electromagnetic radiation (52) emitted by the active region along the emission direction (90).
摘要:
What is specified is an edge emitting semiconductor laser chip comprising a carrier substrate (1), an interlayer (2) promoting adhesion between the carrier substrate (1) and a component structure (50) of the edge emitting semiconductor laser chip, and the component structure (50) comprising an active zone (5) provided for generating radiation.
摘要:
The semiconductor layer structure comprises a superlattice (9) composed of alternately stacked layers (9a, 9b) of III-V semiconductor compounds of a first composition (a) and at least one second composition (b). The layers (9a, 9b) of the superlattice (9) contain dopants in predetermined concentrations, with regard to which the concentrations of the dopants are different at least two layers of a same composition in the superlattice (9), the concentration of the dopants is graded within at least one layer (9a, 9b) of the superlattice (9), and the superlattice (9) comprises layers that are doped with different dopants or comprise at least one layer (9a, 9b) that is undoped. The electrical and optical properties of the superlattice (9) can be adapted to given requirements in the best possible manner in this way.
摘要:
A radiation-emitting semiconductor component includes a semiconductor body. The semiconductor body has a semiconductor layer sequence having an active region provided for generating radiation. The semiconductor component has a waveguide, which is provided for laterally guiding the radiation generated in the active region and which extends between a mirror surface and a coupling-out surface. The waveguide meets the mirror surface perpendicularly and forms an acute angle with a normal to the coupling-out surface.