Abstract:
This invention relates to a synthetic zeolite, designated as ECR-18, having a structure similar to the mineral paulingite and a process for preparation of the zeolite.
Abstract:
An improved process for separating ortho aromatic isomers from a feed stream containing a mixture of aromatics by contacting the feed stream with a bed of the crystalline aluminosilicate adsorbent CSZ-1. The adsorbed ortho aromatic isomer is removed from the adsorbent by desorption.
Abstract:
A high silica faujasite structure, CSZ-3, has a composition 0.02 to 0.20 Cs.sub.2 O: 0.80 to 0.95 Na.sub.2 O: Al.sub.2 O.sub.3 : 5.0 to 7.0 SiO.sub.2 : 2-10 H.sub.2 O The zeolite has utility in sorption, separation and catalytic applications and it has high hydrothermal stability. It is made by reacting sources of silica, alumina, soda, and cesia together with a nucleating agent in the form of seeds or a seed solution, followed by hot aging at a temperature between 50.degree. and 160.degree. C.
Abstract:
Pillared interlayered clays are reacted with a base such as ammonium hydroxide to increase the ion exchange capacity thereof. The pillared interlayered clays are prepared by reacting a smectite clay, such as bentonite, with a metal complex polymer, such as chlorhydrol, and calcining the resulting product.
Abstract:
Type Y zeolite is prepared using a minimum excess of reactants by a method wherein required sodium hydroxide, silica, alumina and water reactants are combined in multi-stage procedure to obtain a uniform fluid reaction slurry. The procedure permits the efficient commercial production of high quality type Y zeolite and minimizes the formation of excess silicate containing by-product effluent.
Abstract:
A process to regenerate iron-based hydrogen sulfide sorbents using steam. The steam is preferably mixed with hydrogen-containing gas and/or an inert gas, such as nitrogen. In a preferred embodiment, the sorbent is first exposed to the steam and then exposed to a hydrogen-containing gas at regeneration conditions.
Abstract:
Disclosed are silicoaluminates (SAPOs) having unique silicon distributions, a method for their preparation and their use as naphtha cracking catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution.
Abstract:
Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and their preparation. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from single phase synthesis solutions, or from microemulsions containing surfactants.
Abstract:
Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions and high catalytic cracking activity, a method for their preparation and their use as FCC catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution. The new SAPOs may have a small crystal size and may be synthesized from a single- phase synthesis solution.
Abstract:
The present invention is a large-pore aluminophosphate or substituted aluminophosphate comprising a compositionaR:(M.sub.x Al.sub.y P.sub.z)O.sub.2wherein R represents an organic templating agent, and a=0 to 0.4, X=0 to 0.4, y=0.35 to 0.5, and Z=0.25 to 0.5 and characterized by the diffraction pattern of Table 1 and M may be Si, Ga, Ge, Co, Ni, Zn, Fe, V, Ti and mixtures thereof.