Abstract:
Methods of forming memory cells comprising phase change and/or chalcogenide materials are disclosed. In one aspect, the method includes providing a lower line stack extending in a first direction, the lower line stack comprising a sacrificial line over a lower conductive line. The method further includes forming a chalcogenide line extending in the first direction by selectively removing the sacrificial material of the sacrificial line and replacing the sacrificial line with a chalcogenide material.
Abstract:
Some embodiments include methods of forming memory. A series of photoresist features may be formed over a gate stack, and a placeholder may be formed at an end of said series. The placeholder may be spaced from the end of said series by a gap. A layer may be formed over and between the photoresist features, over the placeholder, and within said gap. The layer may be anisotropically etched into a plurality of first vertical structures along edges of the photoresist features, and into a second vertical structure along an edge of the placeholder. A mask may be formed over the second vertical structure. Subsequently, the first vertical structures may be used to pattern string gates while the mask is used to pattern a select gate. Some embodiments include methods of forming conductive runners, and some embodiments may include semiconductor constructions.
Abstract:
Methods, systems, and devices for word line structures for three-dimensional memory arrays are described. A memory device may include word line structures that support accessing memory cells arranged in a three-dimensional level architecture. The word line structures may be arranged above a substrate and be separated from each other by respective dielectric layers. Each word line structure may include word line members and a word line plate that is connected to each word line member. Each word line plate may include a contact that may be coupled with a word line decoder operable to bias the word line plate. To couple the word line plate to the word line decoder, the memory device may include first vias that extend through holes in the word line plates and are coupled with second vias that extend from a respective contact through openings in the word line plates above the contact.
Abstract:
Methods, systems, and devices for trench and pier architectures for three-dimensional memory arrays are described. A semiconductor device (e.g., a memory die) may include pier structures formed in contact with features formed from alternating layers of materials deposited over a substrate, which may provide support for subsequent processing. For example, a memory die may include alternating layers of a first material and a second material, which may be formed into various cross-sectional patterns. Pier structures may be formed in contact with the cross sectional patterns such that, when either the first material or the second material is removed to form voids, the pier structures may provide mechanical support of the cross-sectional pattern of the remaining material. In some examples, such pier structures may be formed within or along trenches or other features aligned along a direction of a memory array, which may provide a degree of self-alignment for subsequent operations.
Abstract:
Methods, systems, and devices for word line structures for three-dimensional memory arrays are described. A memory device may include word line structures that support accessing memory cells arranged in a three-dimensional level architecture. The word line structures may be arranged above a substrate and be separated from each other by respective dielectric layers. Each word line structure may include word line members and a word line plate that is connected to each word line member. Each word line plate may include a contact that may be coupled with a word line decoder operable to bias the word line plate. To couple the word line plate to the word line decoder, the memory device may include first vias that extend through holes in the word line plates and are coupled with second vias that extend from a respective contact through openings in the word line plates above the contact.
Abstract:
Methods for forming microelectronic device structures include forming interconnects that are self-aligned with both a lower conductive structure and an upper conductive structure. At least one lateral dimension of an interconnect is defined upon subtractively patterning the lower conductive structure along with a first sacrificial material. At least one other lateral dimension of the interconnect is defined by patterning a second sacrificial material or by an opening formed in a dielectric material through which the interconnect will extend. A portion of the first sacrificial material, exposed within the opening through the dielectric material, along with the second sacrificial material are removed and replaced with conductive material(s) to integrally form the interconnect and the upper conductive structure. The interconnect occupies a volume between vertically overlapping areas of the lower conductive structure and the upper conductive structure, where such overlapping areas coincide with the opening through the dielectric material.
Abstract:
Some embodiments include an integrated assembly having a pair of substantially parallel features spaced from one another by an intervening space. A conductive pipe is between the features and substantially parallel to the features. The conductive pipe may be formed within a tube. The tube may be generated by depositing insulative material between the features in a manner which pinches off a top region of the insulative material to leave the tube as a void region under the pinched-off top region.
Abstract:
Methods and apparatuses for a cross-point memory array and related fabrication techniques are described. The fabrication techniques described herein may facilitate concurrently building two or more decks of memory cells disposed in a cross-point architecture. Each deck of memory cells may include a plurality of first access lines (e.g., word lines), a plurality of second access lines (e.g., bit lines), and a memory component at each topological intersection of a first access line and a second access line. The fabrication technique may use a pattern of vias formed at a top layer of a composite stack, which may facilitate building a 3D memory array within the composite stack while using a reduced number of processing steps. The fabrication techniques may also be suitable for forming a socket region where the 3D memory array may be coupled with other components of a memory device.
Abstract:
Methods, systems, and devices for techniques for forming self-aligned memory structures are described. Aspects include etching a layered assembly of materials including a first conductive material and a first sacrificial material to form a first set of channels along a first direction that creates a first set of sections. An insulative material may be deposited within each of the first set of channels and a second sacrificial material may be deposited onto the first set of sections and the insulating material. A second set of channels may be etched into the layered assembly of materials along a second direction that creates a second set of sections, where the second set of channels extend through the first and second sacrificial materials. Insulating material may be deposited in the second set of channels and the sacrificial materials removed leaving a cavity. A memory material may be deposited in the cavity.
Abstract:
Methods and apparatuses for thin film transistors and related fabrication techniques are described. The thin film transistors may access two or more decks of memory cells disposed in a cross-point architecture. The fabrication techniques may use one or more patterns of vias formed at a top layer of a composite stack, which may facilitate building the thin film transistors within the composite stack while using a reduced number of processing steps. Different configurations of the thin film transistors may be built using the fabrication techniques by utilizing different groups of the vias. Further, circuits and components of a memory device (e.g., decoder circuitry, interconnects between aspects of one or more memory arrays) may be constructed using the thin film transistors as described herein along with related via-based fabrication techniques.