Abstract:
A light emitting device includes a base member, a laser element, a retaining member, a fluorescent member, and first and second fixing members. The retaining member has a first surface on a laser element side and a second surface not on the laser element side. The fluorescent member is fixed to a through hole of the retaining member. The first and second fixing members clamp the retaining member. The first and second fixing members have first and second contact surfaces in contact with the first and second surfaces of the retaining member, respectively. A distance between the first and second contact surfaces becomes smaller as the first and second contact surfaces become farther from the through hole. The retaining member, the first and second fixing members are arranged such that a space surrounded by the retaining member, and the first and second fixing members exists around the retaining member.
Abstract:
A manufacturing method of a light emitting device includes preparing a wafer that is provided by arranging a plurality of semiconductor light emitting elements including semiconductor stacks and electrodes provided on first surfaces of the semiconductor stacks. A metal wire is wired in an arc shape between the electrodes of the plurality of semiconductor light emitting elements that are arranged in one direction on the wafer so as to connect each of the electrodes and the metal wire. A resin layer is provided on a side of the first surfaces of the semiconductor stacks in such a way that the metal wire is accommodated inside the resin layer. The wafer is cut along a boundary line to segment the plurality of semiconductor light emitting elements so as to singulate the plurality of semiconductor light emitting elements.
Abstract:
A manufacturing method of a flip-chip nitride semiconductor light emitting element includes a step of providing a nitride semiconductor light emitting element structure; a protective layer forming step; a first resist pattern forming step; a protective layer etching step; a first metal layer forming step; a first resist pattern removing step; a third metal layer forming step; a second resist pattern forming step; a second metal layer forming step; a second resist pattern removing step; and a third metal layer removing step.
Abstract:
A light emitting device is constituted with a semiconductor light emitting element on which a support member is disposed on one surface provided with a p-side electrode and an n-side electrode and a fluorescent material layer is disposed on the other surface which is an opposite side of the one surface. The support member includes a resin layer, an electrode for p-side external connection and an electrode for n-side external connection disposed exposed at a surface opposite side of a surface where the resin layer is in touch with a light emitting element, and internal wirings disposed in the resin layer and electrically connecting between a p-side electrode and the electrode for p-side external connection respectively. The internal wirings include a metal wire and a metal plated layer, and a metal wire and a metal plated layer respectively connected in series.
Abstract:
A light emitting device is constituted with a semiconductor light emitting element on which a support member is disposed on one surface provided with a p-side electrode and an n-side electrode and a fluorescent material layer is disposed on the other surface which is an opposite side of the one surface. The support member includes a resin layer, an electrode for p-side external connection and an electrode for n-side external connection disposed exposed at a surface opposite side of a surface where the resin layer is in touch with a light emitting element, and internal wirings disposed in the resin layer and electrically connecting between a p-side electrode and the electrode for p-side external connection respectively. The internal wirings include a metal wire and a metal plated layer, and a metal wire and a metal plated layer respectively connected in series.
Abstract:
To provide a method of manufacturing at low cost a light emitting device that converts the wavelength of light radiated by a light emitting element and emits, the method includes: forming a phosphor layer on a translucent substrate; arranging a plurality of light emitting elements with a predetermined spacing, the light emitting elements having an electrode formed face provided with positive and negative electrodes respectively and arranged with the electrode formed faces on the top; embedding a resin containing phosphor particles so that an upper face of the embedded resin does not bulge over a plane containing the electrode formed faces; and curing the resin, and then cutting and dividing the cured resin, the phosphor layer and the translucent substrate into a plurality of light emitting devices each including one or more of the light emitting elements.