Abstract:
An optoelectronic semiconductor chip is disclosed. The optoelectronic semiconductor chip includes a semiconductor layer sequence having an active zone suitable for emitting radiation, a carrier substrate, and a mirror layer, the mirror layer being arranged between the semiconductor layer sequence and the carrier substrate, wherein the semiconductor layer sequence is subdivided into a plurality of active regions arranged alongside one another, wherein the plurality of active regions are separated from one another in each case by a trench in the semiconductor layer sequence, wherein the trench in each case severs the semiconductor layer sequence and the mirror layer, wherein the mirror layer has side surfaces facing a trench and side surfaces facing an outer side of the semiconductor chip, wherein the side surfaces of the mirror layer that face an outer side of the semiconductor chip have a metallic encapsulation layer.
Abstract:
A radiation-emitting semiconductor chip includes a carrier and a semiconductor body having a semiconductor layer sequence, wherein an emission region and a protective diode region are formed in the semiconductor body having the semiconductor layer sequence; the semiconductor layer sequence includes an active region that generates radiation and is arranged between a first semiconductor layer and a second semiconductor layer; the first semiconductor layer is arranged on a side of the active region facing away from the carrier; the emission region has a recess extending through the active region; the first semiconductor layer, in the emission region, electrically conductively connects to a first connection layer, wherein the first connection layer extends in the recess from the first semiconductor layer toward the carrier; the second semiconductor layer, in the emission region, electrically conductively connects to a second connection layer.
Abstract:
An optoelectronic semiconductor chip and a method for producing an optoelectronic semiconductor chip are disclosed. In an embodiment an optoelectronic semiconductor chip includes a support having a support top side, a semiconductor layer sequence having an active layer for generating electromagnetic radiation, wherein the active layer is located between an n-type n-layer and a p-type p-layer of the semiconductor layer sequence, wherein the semiconductor layer sequence, as seen in a plan view of the support top side, is patterned into emitter regions arranged next to one another and electrical conductor tracks located on a side of the semiconductor layer sequence facing away from the support, where the electrical conductor tracks include contact surfaces. The chip further includes an n-contact point and a p-contact point for electrically contacting the semiconductor chip, wherein the emitter regions are electrically connected in series via the at least two conductor tracks.
Abstract:
In an embodiment a method for producing a component having a carrier and at least one component part electrically conductively connected to the carrier and mechanically fixed to the carrier by an electrically insulating bonding layer includes providing the carrier having a connection layer, wherein the bonding layer is disposed on the carrier and has at least one opening, wherein a connection surface of the connection layer is exposed, and wherein the bonding layer projects vertically beyond the exposed connection surface or vice versa, applying the component part having a contact layer on the carrier in such that, in top view of the carrier, an exposed contact surface of the contact layer covers the opening and the connection surface located therein, wherein the exposed contact surface is spaced apart from the exposed connection surface by a vertical distance and reducing the vertical distance by changing a volume of the bonding layer such that the exposed contact surface and the exposed connection surface are brought together, such that they are directly adjacent to each other and such that a direct electrical contact is formed between the contact layer and the connection layer.
Abstract:
In an embodiment a method for producing a component having a carrier and at least one component part electrically conductively connected to the carrier and mechanically fixed to the carrier by an electrically insulating bonding layer includes providing the carrier having a connection layer, wherein the bonding layer is disposed on the carrier and has at least one opening, wherein a connection surface of the connection layer is exposed, and wherein the bonding layer projects vertically beyond the exposed connection surface or vice versa, applying the component part having a contact layer on the carrier in such that, in top view of the carrier, an exposed contact surface of the contact layer covers the opening and the connection surface located therein, wherein the exposed contact surface is spaced apart from the exposed connection surface by a vertical distance and reducing the vertical distance by changing a volume of the bonding layer such that the exposed contact surface and the exposed connection surface are brought together, such that they are directly adjacent to each other and such that a direct electrical contact is formed between the contact layer and the connection layer.
Abstract:
A method for producing a component and a component are disclosed. In an embodiment a method includes providing a substrate, applying a composite of components to the substrate, forming an anchoring layer on the composite of components, attaching a carrier to the anchoring layer, wherein the anchoring layer is disposed between the substrate and the carrier and removing the substrate, wherein the composite of components is divided into a plurality of components by forming a plurality of separating trenches, wherein, after removing the substrate, the components continue to be held on the carrier by the anchoring layer, and wherein the anchoring layer comprises at least one predetermined breaking layer having at least one predetermined breaking position, the predetermined breaking position being laterally surrounded by the separating trenches and—in a plan view of the carrier—being covered by one of the components.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment a component includes a semiconductor layer sequence having a first semiconductor layer, an active layer, a second semiconductor layer and a top side stacked in the recited order, a first contact layer arranged at the first semiconductor layer, a mirror layer arranged on the top side and a recess in the semiconductor layer sequence which extends from the top side through the entire second semiconductor layer and the active layer, wherein the recess has a bottom surface in a region of the first semiconductor layer, wherein the mirror layer covers a portion of the recess in plan view, wherein the first contact layer is in direct electrical and mechanical contact with a contact pin, and wherein the contact pin extends from the first contact layer to the top side of the semiconductor layer sequence.
Abstract:
A component includes a carrier and a semiconductor body arranged on the carrier, wherein the semiconductor body has an active layer arranged between the first and second semiconductor layers and is configured to generate, during operation of the component, an electromagnetic radiation that can be coupled out from the component through a first main surface, the first main surface of the component has an electrical contact layer configured to electrically contact a first semiconductor layer and in a plan view the carrier covers the first main surface in places, and in direct vicinity of the electrical contact layer the component includes a shielding structure configured to prevent electromagnetic radiation generated by the active layer from impinging onto the contact layer.
Abstract:
A light-emitting semiconductor chip and a method for producing a light-emitting semiconductor chip are disclosed. In an embodiment a light-emitting chip includes a semiconductor body having an active region designed to generate light, a dielectric mirror including an electrically insulating material and a first metallic mirror including an electrically conductive material, wherein the semiconductor body expands towards a light exit side, wherein the dielectric mirror is arranged on a side of the semiconductor body facing away from the light exit side, wherein the first metallic mirror is arranged on a side of the dielectric mirror facing away from the semiconductor body, wherein the first metallic mirror electrically contacts the semiconductor body through at least one opening in the dielectric mirror, and wherein the dielectric mirror, apart from the at least one opening, completely covers the semiconductor body on the side facing away from the light exit side.
Abstract:
An optoelectronic semiconductor chip includes a carrier and a semiconductor body having an active layer that generates electromagnetic radiation, wherein the semiconductor body is arranged on the carrier, the semiconductor body has a first main surface facing away from the carrier and a second main surface facing the carrier, the semiconductor chip has a side surface having an anchoring structure, and the second main surface is arranged between the first main surface and the anchoring structure.