Abstract:
An optoelectronic component includes a layer structure which has a first gallium nitride layer and an aluminum-containing nitride intermediate layer. In this case, the aluminum-containing nitride intermediate layer adjoins the first gallium nitride layer. The layer structure has an undoped second gallium nitride layer which adjoins the aluminum-containing nitride intermediate layer.
Abstract:
An optoelectronic semiconductor body includes a semiconductor layer sequence which has an active layer suitable for generating electromagnetic radiation, and a first and a second electrical connecting layer. The semiconductor body is provided for emitting electromagnetic radiation from a front side. The first and the second electrical connecting layer are arranged at a rear side opposite the front side and are electrically insulated from one another by means of a separating layer. The first electrical connecting layer, the second electrical connecting layer and the separating layer laterally overlap and a partial region of the second electrical connecting layer extends from the rear side through a breakthrough in the active layer in the direction of the front side. Furthermore, a method for producing such an optoelectronic semiconductor body is specified.
Abstract:
A method of producing a plurality of optoelectronic semiconductor chips includes a) providing a layer composite assembly having a principal plane which delimits the layer composite assembly in a vertical direction, and includes a semiconductor layer sequence having an active region that generates and/or detects radiation, wherein a plurality of recesses extending from the principal plane in a direction of the active region are formed in the layer composite assembly; b) forming a planarization layer on the principal plane such that the recesses are at least partly filled with material of the planarization layer; c) at least regionally removing material of the planarization layer to level the planarization layer; and d) completing the semiconductor chips, wherein for each semiconductor chip at least one semiconductor body emerges from the semiconductor layer sequence.
Abstract:
A method is provided for producing a nitride compound semiconductor device. A growth substrate has a silicon surface. A buffer layer, which comprises AlxInyGa1-x-yN with 0≦x≦1, 0≦y≦1 and x+y≦1, is grown onto the silicon surface of the substrate. A semiconductor layer sequence is grown onto the buffer layer. The buffer layer includes a material composition that varies in such a way that a lateral lattice constant of the buffer layer increases stepwise or continuously in a first region and decreases stepwise or continuously in a second region, which follows the first region in the growth direction. At an interface with the semiconductor layer sequence, the buffer layer includes a smaller lateral lattice constant than a semiconductor layer of the semiconductor layer sequence adjoining the buffer layer.
Abstract:
In at least one embodiment of the method, said method includes the following steps: A) producing radiation-active islands (4) having a semiconductor layer sequence (3) on a growth substrate (2), wherein the islands (4) each comprise at least one active zone (33) of the semiconductor layer sequence (3), and an average diameter of the islands (4), as viewed in a top view of the growth substrate, amounts to between 50 nm and 10 μm inclusive, B) producing a separating layer (5) on a side of the islands (4) facing the growth substrate (2), wherein the separating layer (5) surrounds the islands (4) all around, as viewed in a top view of the growth substrate (2), C) attaching a carrier substrate (6) to a side of the islands (4) facing away from the growth substrate (2), and D) detaching the growth substrate (2) from the islands (4), wherein at least a part of the separating layer (5) is destroyed and/or at least temporarily softened during the detachment.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer stack including a nitride compound semiconductor material on a carrier substrate, wherein the semiconductor layer stack includes an active layer that emits an electromagnetic radiation, the semiconductor layer stack being arranged between a layer of a first conductivity and a layer of a second conductivity, the layer of the first conductivity is adjacent a front of the semiconductor layer stack, the layer of the first conductivity electrically connects to a first electrical connection layer covering at least a portion of a back of the semiconductor layer stack, and the layer of the second conductivity type electrically connects to a second electrical connection layer arranged at the back.
Abstract:
The invention relates to a light-emitting semiconductor component, comprising—a first semiconductor body (1), which comprises an active zone (11) in which during the operation of the light-emitting semiconductor component electromagnetic radiation is generated, at least some of which leaves the first semiconductor body (1) through a radiation exit surface (1a), and—a second semiconductor body (2), which is suitable for converting the electromagnetic radiation into converted electromagnetic radiation having a longer wavelength, wherein—the first semiconductor body (1) and the second semiconductor body (2) are produced separately from each other,—the second semiconductor body (2) is electrically inactive, and—the second semiconductor body (2) is in direct contact with the radiation exit surface (1a) and is attached there to the first semiconductor body (1) without connecting means.
Abstract:
An optoelectronic semiconductor chip includes a multiplicity of active regions arranged at a distance from one another, and a continuous current spreading layer, wherein at least one of the active regions has a main extension direction, one of the active regions has a core region formed with a first semiconductor material, the active region has an active layer covering the core region at least in directions transversely with respect to the main extension direction of the active region, the active region has a cover layer formed with a second semiconductor material and covers the active layer at least in directions transversely with respect to the main extension direction of the active region, and the current spreading layer covers all cover layers of the active region.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer stack including a nitride compound semiconductor material on a carrier substrate, wherein the semiconductor layer stack includes an active layer that emits an electromagnetic radiation, the semiconductor layer stack being arranged between a layer of a first conductivity and a layer of a second conductivity, the layer of the first conductivity is adjacent a front of the semiconductor layer stack, the layer of the first conductivity electrically connects to a first electrical connection layer covering at least a portion of a back of the semiconductor layer stack, and the layer of the second conductivity type electrically connects to a second electrical connection layer arranged at the back.
Abstract:
An optoelectronic semiconductor chip includes a multiplicity of active regions, arranged at a distance from one another, and a reflective layer arranged at an underside of the multiplicity of active regions, wherein at least one of the active regions has a main extension direction, one of the active regions has a core region formed with a first semiconductor material, the active region has an active layer, covering the core region at least in directions transversely with respect to the main extension direction of the active region, the active region has a cover layer formed with a second semiconductor material and covers the active layer at least in directions transversely with respect to the main extension direction of the active region, and the reflective layer reflects electromagnetic radiation generated during operation in the active layer.