Abstract:
This, disclosure provides systems, methods and apparatus for improving the angular light distribution of a display apparatus. Smaller shutter-based display apparatus that modulate light passing through at least two apertures in an aperture or light blocking layer can provide similar viewing angle characteristics as larger shutter-based modulators by disproportionately reducing the width of a subset of the at least two apertures in relation to the remainder of the apertures. As the width of such apertures is one of the primary determinants of viewing angle, allowing a greater percentage of the light throughput of a shutter assembly to pass through wider apertures helps maintain a wider viewing angle for the display.
Abstract:
Light guides and backlight systems are disclosed that include one or more groups of geometric light redirectors whose arrangement and/or orientation across the surface of a light guide varies to improve light emission uniformity and to reduce visual artifacts.
Abstract:
This methods and devices described herein relate to displays and methods of manufacturing cold seal fluid-filled displays, including MEMS. The fluid substantially surrounds the moving components of the MEMS display to reduce the effects of stiction and to improve the optical and electromechanical performance of the display. The invention relates to a method for sealing a MEMS display at a lower temperature such that a vapor bubble does not form forms only at temperatures about 15° C. to about 20° C. below the seal temperature. In some embodiments, the MEMS display apparatus includes a first substrate, a second substrate separated from the first substrate by a gap and supporting an array of light modulators, a fluid substantially filling the gap, a plurality of spacers within the gap, and a sealing material joining the first substrate to the second substrate.
Abstract:
This disclosure provides systems, methods and apparatus for dissipating charge buildup within a display element with a conductive layer. The conductive layer is maintained in electrical contact with a fluid within the display element. The fluid, in turn, remains in contact with light modulators within the display elements. Any charge buildup that may be caused by the filling of the fluid during fabrication of the display device, or during operation of the light modulators can be dissipated by the conductive layer. Thus, by dissipating the charge buildup, the conductive layer reduces or eliminates electrostatic forces due to the charge buildup that may affect the operability of the light modulators. The display can include conductive spacers in an active display region of the display and a spacer-free region that allows the substrates to deform while retaining an electrical connection between the conductive layer and the spacers in the active display region.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for enhancing display viewability in high ambient conditions without excessive increase in power consumption. In one aspect, a controller associated with the display device can be configured to obtain an indication of ambient light conditions from an ambient light sensor or from a host device hosting the display device. Upon receiving an image frame, the controller can derive a set of color subfields and determine a bit-depth value for each color subfield based on the obtained indication of current ambient light conditions and mapping data which maps ranges of ambient light to respective bit-depth values on a color subfield by color subfield basis. The controller can then generate a number of subframes for each color subfield based on the respective determined bit-depth value and cause the generated subframes to be displayed.
Abstract:
A direct-view display includes an array of MEMS light modulators and a control matrix formed on a transparent substrate, where each light modulator can be driven into at least two states, and a controller for controlling the states of each light modulator in the array. The control matrix transmits data and actuation voltages to the array. The controller includes an input, a processor, a memory, and an output. The input receives image data encoding an image frame for display. The processor derives a plurality of sub-frame data sets from the image data, where each sub-frame data set indicates desired states of light modulators in multiple rows and multiple columns of the array. The memory stores the plurality of sub-frame data sets. The output outputs the plurality of sub-frame data sets according to an output sequence to drive light modulators into the states indicated in the sub-frame data sets.
Abstract:
This disclosure provides systems, methods and apparatus for reducing flicker in display devices. In some image formation processes, a controller can form an image by utilizing a set of color subfields in displaying subframes associated with each of the color subfields. In some implementations, the controller may determine whether to divide or split the display of certain subframes based on environmental factors such as ambient light with or without concern for flicker. In some implementations, the controller may determine to divide or split the display of an x-channel subframe based on the ambient light. The controller can monitor the ambient light levels via an ambient light sensor, and compare the ambient light level to an ambient light threshold. If the ambient light levels go below the ambient light threshold, the controller can employ subframe division or splitting.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for displaying images using a frame-specific contributing color (FSCC). In one aspect, an input is configured to receive image data corresponding to a current image frame. Contributing color selection logic is configured, based on received image data, to obtain a FSCC for use in conjunction with a set of frame-independent contributing colors (FICCs) to generate the current image frame on a display. In addition, subframe generation logic is configured to process the received image data for the current image frame to generate at least two subframes for each of the FICCs and the obtained FSCC such that an output by the display of the generated subframes results in the display of the current image frame.
Abstract:
Systems, apparatus, and methods are disclosed herein for adjusting the operation of a display based on ambient lighting conditions. One such apparatus includes a sensor input for receiving sensor data indicative of an ambient lighting condition, output logic and color gamut correction logic. The output logic is configured to simultaneously cause light sources of at least two colors to be illuminated to form each of at least three generated primary colors. The color gamut correction logic is configured to cause the output logic to adjust the output of at least one display light source for each of the at least three generated primary colors to change the saturation of each of the at least three generated primary colors based on the received ambient light sensor data.
Abstract:
A method of operating a display including loading image data to pixels in multiple rows of pixels in an array of pixels during a data loading phase, actuating the pixels in the multiple rows during an update phase, and illuminating at least one lamp during an lamp illumination phase to illuminate the actuated pixels to form an image on the display, in which each of the loading, actuating and illuminating phases partially overlap in time.