Abstract:
Provided are nanostructures and optical devices having the nanostructures. The nanostructure may include a carbon nanomaterial layer, a nanopattern formed on the carbon nanomaterial layer, and a metal layer formed on a surface of the nanopattern. The nanostructure may be formed in a ring shape, and the metal layer may include a plurality of metal layers formed of different metals.
Abstract:
A semiconductor device, a method for manufacturing the same, and an electronic device including the same are provided. The semiconductor device includes a first transistor and a second transistor. The first transistor includes a first channel layer and a first ion gel. The second transistor includes a second channel layer and a second ion gel. The first channel layer and the second channel layer may include, for example, graphene. The first ion gel and the second ion gel include different ionic liquids. The first ion gel and the second ion gel include different cations and/or different anions. One of the first transistor and the second transistor is a p-type transistor, and the other one is an n-type transistor. The combination of the first transistor and the second transistor constitutes an inverter.
Abstract:
An operating method of a calibration system for a display device obtains image information about an image displayed on display device and wavelength information about pixels of the image information using a hyperspectral camera included in an electronic device, transmits the obtained image information and wavelength information to a first application in the electronic device, generates calibration data about the obtained image information and wavelength information through the first application and transmits the calibration data to a second application in the display device, and performs color calibration of the display device based on the calibration data transmitted to the second application to display a color calibrated image.
Abstract:
A hyperspectral image sensor includes an optical irradiator configured to irradiate light to a partial region of an object, an optical detector configured to receive detection light generated in the partial region in response to the irradiated light and generate spectrum signals, each of the spectrum signals corresponding to a respective sub-region of a plurality of sub-regions included in the partial region, and a processor configured to generate a hyperspectral image of the partial region based on the spectrum signals.
Abstract:
An electronic device having a stacking structure including a plurality of 2D material layers is provided. The stacking structure includes a first 2D material layer, among the plurality of 2D material layers, stacked adjacent to a second 2D material layer, among the plurality of 2D material layers, and the first 2D material layer is rotated with respect to the second 2D material layer.
Abstract:
An electronic device having a stacking structure including a plurality of 2D material layers is provided. The stacking structure includes a first 2D material layer, among the plurality of 2D material layers, stacked adjacent to a second 2D material layer, among the plurality of 2D material layers, and the first 2D material layer is rotated with respect to the second 2D material layer.
Abstract:
Provided are an optical device and a method of controlling the direction of light from an optical device. The optical device includes: a substrate; a metal layer on the substrate; a first slot which is provided in the metal layer; and at least one light source provided in the first slot, wherein light is emitted from the at least one light source in the direction of the top part of the first slot or the bottom part of the first slot.
Abstract:
An apparatus for outputting directional light includes a light-emitting structure including a light-emitting layer that emits light, and an optical antenna layer disposed on the light-emitting structure, wherein the optical antenna layer includes a light feeder configured to resonate light output from the light-emitting layer and a light reflector configure to reflect light output from the light feeder to have directivity. The light feeder and the light reflector are formed on a surface of the optical antenna layer.
Abstract:
A graphene device and a method of operating the same are provided. The graphene device includes: an active layer including a plurality of meta atoms spaced apart from each other, each of the meta atoms having a radial shape, and a graphene layer that contacts each of the plurality of meta atoms; and a dielectric layer covering the active layer.
Abstract:
Provided are a nanostructure and an optical device including the nanostructure. The nanostructure is formed on a two-dimensional material layer such as graphene and includes nanopatterns having different shapes. The nanopattern may include a first nanopattern and a second nanopattern and may be spherical; cube-shaped; or poly-pyramid-shaped, including a triangular pyramid shape; or polygonal pillar-shaped.