Abstract:
Provided herein may be a memory device and a memory system including the memory device. The memory device may include a memory block including a plurality of memory cells, a peripheral circuit configured to perform a selective erase operation on the memory cells, and control logic configured to control, during the selective erase operation, the peripheral circuit to apply an erase allowable voltage to a selected word line among a plurality of word lines in the memory block, apply an erase voltage to a selected string among a plurality of strings in the memory block, and float unselected word lines and unselected strings.
Abstract:
Provided are a wafer level package and a manufacturing method thereof. A reconfigured substrate may be formed by disposing a first semiconductor die on a dummy wafer, and forming a molding layer and a mold covering layer. A second semiconductor die may be stacked on the first semiconductor die and a photosensitive dielectric layer may be formed. Conductive vias penetrating the photosensitive dielectric layer may be plated.
Abstract:
An operating method of a memory system including first and second one half pages includes acquiring first and second partial data from main data; performing a first program operation to the first one half page of a selected page with the first partial data; and performing a second program operation to the second one half page of the selected page with the second partial data. The first and second partial data may be programmed in the same first column region in the first and second one half pages, respectively.
Abstract:
A semiconductor memory device includes memory cells coupled to a word line; and a peripheral circuit configured to read first to kth page data from the memory cells by sequentially applying first to kth test voltages to the word line, where k is a natural number greater than 3, wherein the peripheral circuit is configured to gradually reduce times during which the first to kth test voltages are applied to the word line.
Abstract:
A data storage device includes a conversion block suitable for performing a scramble operation on write data, and generating random write data, wherein the scramble operation includes inversion/non-inversion processing and calculation processing based on a random pattern.
Abstract:
A method of programming a non-volatile memory device includes programming memory cells selected from the plurality of memory cells by increasing turn values of program loops based on an incremental step pulse program (ISPP) algorithm; detecting a first turn value of a first program loop wherein, in the first program loop, a first number or a first ratio of first unprogrammed memory cells is smaller than or equal to a first set value; calculating a second turn value of a second program loop based on the first turn value wherein, in the second program loop, a second number or a second ratio of second unprogrammed memory cells is expected to be smaller than or equal to a second set value, the second set value being smaller than the first set value; executing subsequent program loops on the unprogrammed memory cells up to the second program loop; detecting a third number or a third ratio of third unprogrammed memory cells in the second program loop; comparing the third number or the third ratio of the third unprogrammed memory cells to the second set value; determining a program pass when the third number or the third ratio of the third unprogrammed memory cells is smaller than or equal to the second set value; and determining a program fail when the third number or the third ratio of the unprogrammed memory cell exceeds the second set value.
Abstract:
A data storage system and a method of operating the same are provided. The method includes performing a program operation on a first page of the pages of a memory block, deciding, when power is switched on after a sudden power-off is generated while the program operation is performed, whether to skip the program operation on a first erase page of the pages based on a second page on which the program operation is performed subsequent to the first page, and performing the program operation on the second page.
Abstract:
A semiconductor memory device and a method of operating the same are provided. The method of operating the semiconductor memory device includes detecting a first group of changed bits between first and second page data, by comparing the first and second page data, which are read out using first and second test voltages from the memory cells, respectively, detecting a second group of changed bits between the second page data and a third page data, by comparing the second page data with the third page data read out from the memory cells using a third test voltage, comparing the numbers of the first and second groups of changed bits, and determining one of the first to third test voltages as a read voltage according to the comparing of the numbers of the first and second groups of changed bits.
Abstract:
A semiconductor memory device and a method of manufacturing the semiconductor memory device are provided. The semiconductor memory device includes a plurality of insulating layers spaced apart from each other in a stacking direction, a slit insulating layer passing through the plurality of insulating layers, a plurality of first variable resistance layers alternately disposed with the plurality of insulating layers in the stacking direction, a plurality of conductive lines interposed between the slit insulating layer and the plurality of first variable resistance layers and alternately disposed with the plurality of insulating layers in the stacking direction, a conductive pillar passing through the plurality of insulating layers and the plurality of first variable resistance layers, and a second variable resistance layer surrounding a sidewall of the conductive pillar.
Abstract:
An electronic device includes a semiconductor memory. The semiconductor memory includes a word line, a bit line, and a memory cell coupled to and disposed between the word line and the bit line, the memory cell including a variable resistance layer that remains in an amorphous state regardless of a value of data stored in the memory cell. In a reset operation, the memory cell is programmed to a high-resistance amorphous state by applying, to the memory cell, a sub-threshold voltage that is greater than 0.7 time of a threshold voltage of the memory cell and is smaller than 0.95 time of the threshold voltage.