Abstract:
A single chip integrated circuit (IC) package includes a die pad, and a spacer ring on the die pad defining a solder receiving area. A solder body is on the die pad within the solder receiving area. An IC die is on the spacer ring and is secured to the die pad by the solder body within the solder receiving area. Encapsulating material surrounds the die pad, spacer ring, and IC die. For a multi-chip IC package, a dam structure is on the die pad and defines multiple solder receiving areas. A respective solder body is on the die pad within a respective solder receiving area. An IC die is within each respective solder receiving area and is held in place by a corresponding solder body. Encapsulating material surrounds the die pad, dam structure, and plurality of IC die.
Abstract:
A single chip integrated circuit (IC) package includes a die pad, and a spacer ring on the die pad defining a solder receiving area. A solder body is on the die pad within the solder receiving area. An IC die is on the spacer ring and is secured to the die pad by the solder body within the solder receiving area. Encapsulating material surrounds the die pad, spacer ring, and IC die. For a multi-chip IC package, a dam structure is on the die pad and defines multiple solder receiving areas. A respective solder body is on the die pad within a respective solder receiving area. An IC die is within each respective solder receiving area and is held in place by a corresponding solder body. Encapsulating material surrounds the die pad, dam structure, and plurality of IC die.
Abstract:
An integrated circuit (IC) package includes a die pad and an IC die secured on the die pad. The IC die had outer edges aligned with outer edges of the die pad. An encapsulating material body surrounds the die pad and IC die. Leads extend outwardly from the encapsulating material body and are coupled to the IC die. Each lead has an upper surface coplanar with an upper surface of the IC die. The die pad has a lower surface exposed through the encapsulating material body, and has a thickness greater than a thickness of each of the plurality of leads.
Abstract:
An electronic device may include a surface mount integrated circuit (IC) package to be attached to a printed circuit board (PCB). The surface mount IC package may include at least one IC and an encapsulating material surrounding the at least one IC and having a component receiving cavity defined therein on a bottom surface thereof to be positioned adjacent the PCB. The surface mount IC package may also include electrical leads coupled to the at least one IC and extending outwardly from the encapsulating material to be coupled to the PCB. The electronic device may also include at least one electronic component carried within the component receiving cavity and that includes electrical contacts to be coupled to the PCB.
Abstract:
One or more embodiments are directed to system in package (SiP) for optical devices, including proximity sensor packaging. One embodiment is directed to an optical package that includes a stacked arrangement with a plurality of optical devices arranged over an image sensor processor die that is coupled to a first substrate. Between the two optical devices and the image sensor processor die there is provided at least a second substrate. In one embodiment, the optical package is a proximity sensor package and the optical devices include a light-emitting diode die and a light-receiving diode die. In one embodiment, the light-emitting diode die is secured to a surface of the second substrate and the light-receiving diode die is secured to a surface of a third substrate. The second and the third substrate may be secured to a surface of the image sensor processor die or to a surface of encapsulation material.
Abstract:
A method is described for making electronic modules includes molding onto a substrate panel a matrix panel defining a plurality of cavities, attaching semiconductor die to the substrate panel in respective cavities of the molded matrix panel, electrically connecting the semiconductor die to the substrate panel, affixing a cover to the molded matrix panel to form an electronic module assembly, mounting the electronic module assembly on a carrier tape, and separating the electronic module assembly into individual electronic modules. An electronic module is described which includes a substrate, a wall member molded onto the substrate, the molded wall member defining a cavity, at least one semiconductor die attached to the substrate in the cavity and electrically connected to the substrate, and a cover affixed to the molded wall member over the cavity.