Abstract:
Provided is a field effect transistor including a gate insulating layer having a two-dimensional material. The field effect transistor may include a first channel layer; a second channel layer disposed on the first channel layer; a gate insulating layer disposed on the second channel layer; a gate electrode disposed on the gate insulating layer; a first electrode electrically connected to the first channel layer; and a second electrode electrically connected to the second channel layer. Here, the gate insulating layer may include an insulative, high-k, two-dimensional material.
Abstract:
A vertical type transistor includes: a substrate; a first source/drain electrode layer provided on the substrate; a second source/drain electrode layer provided above the first source/drain electrode layer; a first gate electrode layer provided between the first and second source/drain electrode layers; a first gate insulating film passing through the first gate electrode layer; a hole passing through the second source/drain electrode layer, the first gate insulating film, and the first source/drain electrode layer; and a first channel layer provided on a lateral side of the hole, wherein the first channel layer may include a 2D semiconductor.
Abstract:
Provided is a field effect transistor including a gate insulating layer having a two-dimensional material. The field effect transistor may include a first channel layer; a second channel layer disposed on the first channel layer; a gate insulating layer disposed on the second channel layer; a gate electrode disposed on the gate insulating layer; a first electrode electrically connected to the first channel layer; and a second electrode electrically connected to the second channel layer. Here, the gate insulating layer may include an insulative, high-k, two-dimensional material.
Abstract:
A method of forming graphene includes: preparing a substrate in a reaction chamber; performing a first growth process of growing a plurality of graphene aggregates apart from each other on the substrate at a first growth rate by using a reaction gas including a carbon source; and performing a second growth process of forming a graphene layer by growing the plurality of graphene aggregates at a second growth rate slower than the first growth rate by using the reaction gas including the carbon source.
Abstract:
Provided is a semiconductor device including graphene. The semiconductor device includes: a substrate including an insulator and a semiconductor; and a graphene layer configured to directly grow only on a surface of the semiconductor, wherein the semiconductor includes at least one of a group IV material and a group III-V compound.
Abstract:
Provided are an interconnect structure and an electronic device including the interconnect structure. The interconnect structure includes a dielectric layer including at least one trench, a conductive wiring filling an inside of the at least one trench, and a cap layer on at least one surface of the conductive wiring. The cap layer includes nanocrystalline graphene. The nanocrystalline includes nano-sized crystals.
Abstract:
Provided are a method of pre-treating a substrate and a method of directly forming graphene by using the method of pre-treating the substrate. In the method of pre-treating the substrate in the method of directly forming graphene, according to an embodiment, the substrate is pre-treated by using a pre-treatment gas including at least a carbon source and hydrogen. The method of directly forming graphene includes a process of pre-treating a substrate and a process of directly growing graphene on the substrate that is pre-treated. The process of pre-treating the substrate is performed according to the method of pre-treating the substrate.
Abstract:
A hardmask composition includes a plurality of graphene nanosheets doped with boron (B) and/or nitrogen (N) and a solvent. A size of the graphene nanosheet may be in a range of about 5 nm to about 1000 nm. The hardmask composition may include an aromatic ring-containing material.
Abstract:
Example embodiments relate to a layer structure having a diffusion barrier layer, and a method of manufacturing the same. The layer structure includes first and second material layers and a diffusion barrier layer therebetween. The diffusion barrier layer includes a nanocrystalline graphene (nc-G) layer. In the layer structure, the diffusion barrier layer may further include a non-graphene metal compound layer or a graphene layer together with the nc-G layer. One of the first and second material layers is an insulating layer, a metal layer, or a semiconductor layer, and the remaining layer may be a metal layer.