Abstract:
A semiconductor device includes a substrate including a cell area having a first active region and a peripheral circuit area having a second active region, a direct contact contacting the first active region in the cell area, a bit line structure disposed on the direct contact, a capacitor structure electrically connected to the first active region, a gate structure disposed on the second active region in the peripheral circuit area, lower wiring layers disposed adjacent to the gate structure and electrically connected to the second active region, upper wiring layers disposed on the lower wiring layers, a wiring insulating layer disposed between the lower wiring layers and the upper wiring layers, and upper contact plugs connected to at least one of the lower wiring layers and the upper wiring layers and extending through the wiring insulating layer.
Abstract:
A method of manufacturing a semiconductor memory device and a semiconductor memory device, the method including providing a substrate that includes a cell array region and a peripheral circuit region; forming a mask pattern that covers the cell array region and exposes the peripheral circuit region; growing a semiconductor layer on the peripheral circuit region exposed by the mask pattern such that the semiconductor layer has a different lattice constant from the substrate; forming a buffer layer that covers the cell array region and exposes the semiconductor layer; forming a conductive layer that covers the buffer layer and the semiconductor layer; and patterning the conductive layer to form conductive lines on the cell array region and to form a gate electrode on the peripheral circuit region.
Abstract:
A semiconductor device may include a bottom sub-electrode on a substrate, a top sub-electrode on the bottom sub-electrode, a dielectric layer covering the bottom and top sub-electrodes, and a plate electrode on the dielectric layer. The top sub-electrode may include a step extending from a side surface thereof, which is adjacent to the bottom sub-electrode, to an inner portion of the top sub-electrode. The top sub-electrode may include a lower portion at a level that is lower than the step and an upper portion at a level which is higher than the step. A maximum width of the lower portion may be narrower than a minimum width of the upper portion. The maximum width of the lower portion may be narrower than a width of a top end of the bottom sub-electrode. The bottom sub-electrode may include a recess in a region adjacent to the top sub-electrode.
Abstract:
Semiconductor memory devices are provided. A semiconductor memory device includes a substrate. The semiconductor memory device includes a plurality of memory cell transistors vertically stacked on the substrate. The semiconductor memory device includes a first conductive line connected to a source region of at least one of the plurality of memory cell transistors. The semiconductor memory device includes a second conductive line connected to a plurality of gate electrodes of the plurality of memory cell transistors. Moreover, the semiconductor memory device includes a data storage element connected to a drain region of the at least one of the plurality of memory cell transistors.
Abstract:
A semiconductor device may include a stack structure that includes a plurality of layers vertically stacked on a substrate, and a plurality of gate electrodes that vertically extend to penetrate the stack structure. Each of the plurality of layers may include a plurality of semiconductor patterns that extend in parallel along a first direction, a bit line that is electrically connected to the semiconductor patterns and extends in a second direction intersecting the first direction, a first air gap on the bit line, and a data storage element that is electrically connected to a corresponding one of the semiconductor patterns. The first air gap is interposed between the bit line of a first layer of the plurality of layers and the bit line of a second layer of the plurality of layers.
Abstract:
A semiconductor device includes an interlayer insulation layer on a semiconductor substrate, a via plug and a wiring line on the via plug, in the interlayer insulation layer, the via plug and the wiring line coupled with each other and forming a stepped structure. The semiconductor device includes a first air-gap region between the interlayer insulation layer and the via plug, and a second air-gap region between the interlayer insulation layer and the wiring line. The first air-gap region and the second air-gap region are not vertically overlapped with each other.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a capacitor structure including a plurality of lower electrodes, a dielectric layer that covers surfaces of the plurality of lower electrodes, and an upper electrode on the dielectric layer. The semiconductor device further includes a support structure that supports the plurality of lower electrodes. The support structure includes a first support region that covers sidewalls of one of the plurality of lower electrodes, and an opening that envelops the first support region when the semiconductor device is viewed in plan view.
Abstract:
The present inventive concepts provide methods for fabricating semiconductor devices. The method may comprise providing a substrate, stacking a conductive layer and a lower mask layer on the substrate, forming a plurality of hardmask layers each having an island shape on the lower mask layer, forming a plurality of upper mask patterns having island shapes arranged to expose portions of the lower mask layer, etching the exposed portions of the lower mask layer to expose portions of the conductive layer, and etching the exposed portions of the conductive layer to form a plurality of contact holes each exposing a portion of the substrate.
Abstract:
A semiconductor device may include a semiconductor substrate with first and second spaced apart source/drain regions defining a channel region therebetween and a control gate structure on the channel region between the first and second spaced apart source/drain regions. More particularly, the control gate structure may include a first gate electrode on the channel region adjacent the first source/drain region, and a second gate electrode on the channel region adjacent the second source/drain region. Moreover, the first and second gate electrodes may be electrically isolated. Related devices, structures, methods of operation, and methods of fabrication are also discussed.
Abstract:
A semiconductor device includes a substrate including a cell area having a first active region and a peripheral circuit area having a second active region, a direct contact contacting the first active region in the cell area, a bit line structure disposed on the direct contact, a capacitor structure electrically connected to the first active region, a gate structure disposed on the second active region in the peripheral circuit area, lower wiring layers disposed adjacent to the gate structure and electrically connected to the second active region, upper wiring layers disposed on the lower wiring layers, a wiring insulating layer disposed between the lower wiring layers and the upper wiring layers, and upper contact plugs connected to at least one of the lower wiring layers and the upper wiring layers and extending through the wiring insulating layer.