Abstract:
A change in electrical characteristics of a semiconductor device including an interlayer insulating film over a transistor including an oxide semiconductor as a semiconductor film is suppressed. The structure includes a first insulating film which includes a void portion in a step region formed by a source electrode and a drain electrode over the semiconductor film and contains silicon oxide as a component, and a second insulating film containing silicon nitride, which is provided in contact with the first insulating film to cover the void portion in the first insulating film. The structure can prevent the void portion generated in the first insulating film from expanding outward.
Abstract:
A change in electrical characteristics of a semiconductor device including an interlayer insulating film over a transistor including an oxide semiconductor as a semiconductor film is suppressed. The structure includes a first insulating film which includes a void portion in a step region formed by a source electrode and a drain electrode over the semiconductor film and contains silicon oxide as a component, and a second insulating film containing silicon nitride, which is provided in contact with the first insulating film to cover the void portion in the first insulating film. The structure can prevent the void portion generated in the first insulating film from expanding outward.
Abstract:
A minute transistor is provided. A transistor with low parasitic capacitance is provided. A transistor having high frequency characteristics is provided. A transistor having a high on-state current is provided. A semiconductor device including the transistor is provided. A semiconductor device having a high degree of integration is provided. A semiconductor device including an oxide semiconductor; a second insulator; a second conductor; a third conductor; a fourth conductor; a fifth conductor; a first conductor and a first insulator embedded in an opening portion formed in the second insulator, the second conductor, the third conductor, the fourth conductor, and the fifth conductor; a region where a side surface and a bottom surface of the second conductor are in contact with the fourth conductor; and a region where a side surface and a bottom surface of the third conductor are in contact with the fifth conductor.
Abstract:
The semiconductor device includes a first layer including a first transistor, a second layer including a first insulating film over the first layer, a third layer including a second insulating film over the second layer, and a fourth layer including a second transistor over the third layer. A first conductive film electrically connects the first transistor and the second transistor to each other through an opening provided in the first insulating film. A second conductive film electrically connects the first transistor, the second transistor, and the first conductive film to one another through an opening provided in the second insulating film. A channel formation region of the first transistor includes a single crystal semiconductor. A channel formation region of the second transistor includes an oxide semiconductor. The width of a bottom surface of the second conductive film is 5 nm or less.
Abstract:
A highly reliable semiconductor device including a transistor using an oxide semiconductor is provided. In a semiconductor device including a bottom-gate transistor including an oxide semiconductor layer, a first insulating layer is formed in contact with the oxide semiconductor layer, and an oxygen doping treatment is performed thereon, whereby the first insulating layer is made to contain oxygen in excess of the stoichiometric composition. The formation of the second insulating layer over the first insulating layer enables excess oxygen included in the first insulating layer to be supplied efficiently to the oxide semiconductor layer. Accordingly, the highly reliable semiconductor device with stable electric characteristics can be provided.
Abstract:
A highly reliable semiconductor device and a method for manufacturing the semiconductor device are provided. The semiconductor device is manufactured with a high yield to achieve high productivity. In the manufacture of a semiconductor device including a transistor in which a gate electrode layer, a gate insulating film, and an oxide semiconductor film are sequentially stacked and a source electrode layer and a drain electrode layer are provided in contact with the oxide semiconductor film, the source electrode layer and the drain electrode layer are formed through an etching step and then a step for removing impurities which are generated by the etching step and exist on a surface of the oxide semiconductor film and in the vicinity thereof is performed.
Abstract:
An object is to provide a technique by which a semiconductor device including a high-performance and high-reliable transistor is manufactured. A protective conductive film which protects an oxide semiconductor layer when a wiring layer is formed from a conductive layer is formed between the oxide semiconductor layer and the conductive layer, and an etching process having two steps is performed. In a first etching step, an etching is performed under conditions that the protective conductive film is less etched than the conductive layer and the etching selectivity of the conductive layer to the protective conductive film is high. In a second etching step, etching is performed under conditions that the protective conductive film is more easily etched than the oxide semiconductor layer and the etching selectivity of the protective conductive film to the oxide semiconductor layer is high.
Abstract:
A stable and minute processing method of a thin film is provided. Further, a miniaturized semiconductor device is provided. A method for processing a thin film includes the following steps: forming a film to be processed over a formation surface; forming an organic coating film over the film to be processed; forming a resist film over the organic coating film; exposing the resist film to light_or_an electron beam; removing part of the resist film by development to expose part of the organic coating film; depositing an organic material layer on the top surface and a side surface of the resist film by plasma treatment; etching part of the organic coating film using the resist film and the organic material layer as masks to expose part of the film to be processed; and etching part of the film to be processed using the resist film and the organic material layer as masks.
Abstract:
A highly reliable semiconductor device and a method for manufacturing the semiconductor device are provided. In a semiconductor device including a bottom-gate transistor in which an insulating layer functioning as a channel protective film is provided over an oxide semiconductor film, elements contained in an etching gas can be prevented from remaining as impurities on a surface of the oxide semiconductor film by performing impurity-removing process after formation of an insulating layer provided over and in contact with the oxide semiconductor film and/or formation of source and drain electrode layers. The impurity concentration in the surface of the oxide semiconductor film is lower than or equal to 5×1018 atoms/cm3, preferably lower than or equal to 1×1018 atoms/cm3.
Abstract:
A semiconductor device with small variations in transistor characteristics is provided. The semiconductor device includes an oxide; a first conductor and a second conductor provided apart from each other over the oxide; an insulator in a region between the first conductor and the second conductor over the oxide; and a conductor over the insulator. A side surface of the oxide, a top surface of the first conductor, a side surface of the first conductor, a top surface of the second conductor, and a side surface of the second conductor include regions in contact with a nitride containing silicon.