Abstract:
A memory device with memory cell pairs each having a single continuous channel region, first and second floating gates over first and second portions of the channel region, an erase gate over a third portion of the channel region between the first and second channel region portions, and first and second control gates over the first and second floating gates. For each of the pairs of memory cells, the first region is electrically connected to the second region of an adjacent pair of memory cells in the same active region, and the second region is electrically connected to the first region of an adjacent pair of the memory cells in the same active region.
Abstract:
A non-volatile memory device that a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is in the semiconductor substrate arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. A negative charge pump circuit generates a first negative voltage. A control circuit receives a command signal and generates a plurality of control signals, in response thereto and applies the first negative voltage to the word line of the unselected memory cells. During the operations of program, read or erase, a negative voltage can be applied to the word lines of the unselected memory cells.
Abstract:
A memory device with memory cell pairs each having a single continuous channel region, first and second floating gates over first and second portions of the channel region, an erase gate over a third portion of the channel region between the first and second channel region portions, and first and second control gates over the first and second floating gates. For each of the pairs of memory cells, the first region is electrically connected to the second region of an adjacent pair of memory cells in the same active region, and the second region is electrically connected to the first region of an adjacent pair of the memory cells in the same active region.
Abstract:
Improved flash memory sensing circuits are disclosed. In one embodiment, a sensing circuit comprises a memory data read block, a memory reference block, a differential amplifier, and a precharge circuit. The precharge circuit compensates for parasitic capacitance between a bit line coupled to a selected memory cell and adjacent bit lines.
Abstract:
A non-volatile memory device comprises a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is located in the semiconductor substrate and arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. During the operations of program, read, or erase, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected memory cells.
Abstract:
The present invention relates to a flash memory system comprising one or more sense amplifiers for reading data stored in flash memory cells. The sense amplifiers utilize fully depleted silicon-on-insulator transistors to minimize leakage. The fully depleted silicon-on-insulator transistors comprise one or more fully depleted silicon-on-insulator NMOS transistors and/or one or more fully depleted silicon-on-insulator PMOS transistors.
Abstract:
The present invention relates to a flash memory system wherein one or more circuit blocks utilize fully depleted silicon-on-insulator transistor design to minimize leakage.
Abstract:
The present invention relates to a circuit and method for low power operation in a flash memory system. In disclosed embodiments of a selection-decoding circuit path, pull-up and pull-down circuits are used to save values at certain output nodes during a power save or shut down modes, which allows the main power source to be shut down while still maintaining the values.
Abstract:
The disclosed embodiments comprise a flash memory device that can be configured to operate as a read only memory device. In some embodiments, the flash memory device can be configured into a flash memory portion and a read only memory portion.