Abstract:
Disclosed is a method of fabricating a semiconductor image sensor device. The method includes providing a substrate having a pixel region, a periphery region, and a bonding pad region. The substrate further has a first side and a second side opposite the first side. The pixel region contains radiation-sensing regions. The method further includes forming a bonding pad in the bonding pad region; and forming light-blocking structures over the second side of the substrate, at least in the pixel region, after the bonding pad has been formed.
Abstract:
Among other things, one or more support structures for integrated circuitry and techniques for forming such support structures are provided. A support structure comprises one or more trench structures, such as a first trench structure and a second trench structure formed around a periphery of integrated circuitry. In some embodiments, one or more trench structures are formed according to partial substrate etching, such that respective trench structures are formed into a region of a substrate. In some embodiments, one or more trench structures are formed according to discontinued substrate etching, such that respective trench structures comprise one or more trench portions separated by separation regions of the substrate. The support structure mitigates stress energy from reaching the integrated circuitry, and facilitates process-induced charge release from the integrated circuitry.
Abstract:
Some embodiments of the present disclosure provide a method of manufacturing a back side illuminated (BSI) image sensor. The method includes receiving a semiconductive substrate; forming a photosensitive element at a front side of the semiconductive substrate; forming a transistor coupled to the photosensitive element; forming a recess at a back side of the semiconductive substrate; forming a first dielectric layer lining to a side portion of the recess and over the back side of the semiconductor substrate; covering a conductive material over the first dielectric layer and filling in the recess; forming a conductive column on top of the recess by patterning the conductive material; and forming a second dielectric layer covering the conductive column and the first dielectric layer.
Abstract:
An embodiment image sensor includes a pixel region spaced apart from a black level control (BLC) region by a buffer region. In an embodiment, a light shield is disposed over the BLC region and extends into the buffer region. In an embodiment, the buffer region includes an array of dummy pixels. Such embodiments effectively reduce light cross talk at the edge of the BLC region, which permits more accurate black level calibration. Thus, the image sensor is capable of producing higher quality images.
Abstract:
Disclosed is a method of fabricating a semiconductor image sensor device. The method includes providing a substrate having a pixel region, a periphery region, and a bonding pad region. The substrate further has a first side and a second side opposite the first side. The pixel region contains radiation-sensing regions. The method further includes forming a bonding pad in the bonding pad region; and forming light-blocking structures over the second side of the substrate, at least in the pixel region, after the bonding pad has been formed.
Abstract:
A die includes a first plurality of edges, and a semiconductor substrate in the die. The semiconductor substrate includes a first portion including a second plurality of edges misaligned with respective ones of the first plurality of edges. The semiconductor substrate further includes a second portion extending from one of the second plurality of edges to one of the first plurality of edges of the die. The second portion includes a first end connected to the one of the second plurality of edges, and a second end having an edge aligned to the one of the first plurality of edges of the die.
Abstract:
A semiconductor image sensor includes a substrate having a first side and a second side that is opposite the first side. An interconnect structure is disposed over the first side of the substrate. A plurality of radiation-sensing regions is located in the substrate. The radiation-sensing regions are configured to sense radiation that enters the substrate from the second side. A plurality of light-blocking structures is disposed over the second side of the substrate. A passivation layer is coated on top surfaces and sidewalls of each of the light-blocking structures. A plurality of spacers is disposed on portions of the passivation layer coated on the sidewalls of the light-blocking structures.
Abstract:
A bonding pad structure comprises an interconnect layer, an isolation layer over the interconnect layer, a conductive pad, and one or more non-conducting stress-releasing structures. The conductive pad comprises a planar portion over the isolation layer, and one or more bridging portions extending through at least the isolation layer and to the interconnect layer for establishing electric contact therewith, wherein there is a trench in the one or more bridging portions. The one or more non-conducting stress-releasing structures are disposed between the isolation layer and the conductive pad. The trench is surrounded by one of the one or more non-conducting stress-releasing structures from a top view.
Abstract:
A semiconductor image sensor includes a substrate having a first side and a second side that is opposite the first side. An interconnect structure is disposed over the first side of the substrate. A plurality of radiation-sensing regions is located in the substrate. The radiation-sensing regions are configured to sense radiation that enters the substrate from the second side. The radiation-sensing regions are separated by a plurality of gaps. A plurality of radiation-blocking structures is disposed over the second side of the substrate. Each of the radiation-blocking structures is aligned with a respective one of the gaps. A plurality of color filters are disposed in between the radiation-blocking structures.
Abstract:
A method of creating a reflective shield for an image sensor device includes depositing a first dielectric layer on a substrate, wherein a photodiode is on the substrate. The method further includes removing surface topography by performing chemical mechanical polishing (CMP) on the first dielectric layer. The method further includes patterning the substrate to define an area on a surface of the first dielectric layer, wherein the area is directly above the photodiode. The method further includes depositing a layer of a material with high reflectivity on the substrate, wherein the material fills the area on the surface of the first dielectric layer. The method further includes removing excess material with high reflectivity, wherein the reflective shield is formed and is embedded in the first dielectric layer. The method further includes depositing a second dielectric material on the substrate, wherein the second dielectric material covers the reflective shield.