Abstract:
Disclosed is a method of fabricating a semiconductor image sensor device. The method includes providing a substrate having a pixel region, a periphery region, and a bonding pad region. The substrate further has a first side and a second side opposite the first side. The pixel region contains radiation-sensing regions. The method further includes forming a bonding pad in the bonding pad region; and forming light-blocking structures over the second side of the substrate, at least in the pixel region, after the bonding pad has been formed.
Abstract:
Disclosed is a method of fabricating a semiconductor image sensor device. The method includes providing a substrate having a pixel region, a periphery region, and a bonding pad region. The substrate further has a first side and a second side opposite the first side. The pixel region contains radiation-sensing regions. The method further includes forming a bonding pad in the bonding pad region; and forming light-blocking structures over the second side of the substrate, at least in the pixel region, after the bonding pad has been formed.
Abstract:
A semiconductor device includes a first layer including a number of first layer metal pads, a second layer formed on top of the first layer, the second layer including a number of second layer metal pads, and vias connecting the first layer metal pads to the second layer metal pads. A surface area overlap between the first layer metal pads and the second layer metal pads is below a defined threshold.
Abstract:
Disclosed is a method of fabricating a semiconductor image sensor device. The method includes providing a substrate having a pixel region, a periphery region, and a bonding pad region. The substrate further has a first side and a second side opposite the first side. The pixel region contains radiation-sensing regions. The method further includes forming a bonding pad in the bonding pad region; and forming light-blocking structures over the second side of the substrate, at least in the pixel region, after the bonding pad has been formed.
Abstract:
A photodiode structure includes a photodiode and a concave reflector disposed below the photodiode. The concave reflector is arranged to reflect incident light from above back toward the photodiode.
Abstract:
A die includes a first plurality of edges, and a semiconductor substrate in the die. The semiconductor substrate includes a first portion including a second plurality of edges misaligned with respective ones of the first plurality of edges. The semiconductor substrate further includes a second portion extending from one of the second plurality of edges to one of the first plurality of edges of the die. The second portion includes a first end connected to the one of the second plurality of edges, and a second end having an edge aligned to the one of the first plurality of edges of the die.
Abstract:
The present disclosure provides an integrated circuit device comprising a substrate having a back surface and a sensing region disposed in the substrate and being operable to sense radiation projected towards the back surface of the substrate. The device further includes a waveguide disposed over the back surface of the substrate. The waveguide is aligned with the sensing region such that the waveguide is operable to transmit the radiation towards the aligned sensing region. The waveguide includes a waveguide wall, and an inner region disposed adjacent to the waveguide wall. A diffractive index of the waveguide wall is less than a diffractive index of the inner region.
Abstract:
An integrated circuit structure includes a semiconductor substrate, an image sensor extending from a front surface of the semiconductor substrate into the semiconductor substrate, and an isolation structure extending from a back surface of the semiconductor substrate into the semiconductor substrate, wherein the isolation structure includes an air-gap therein. An air-gap sealing layer is on a backside of the semiconductor substrate. The air-gap sealing layer seals the air-gap, wherein the air-gap sealing layer includes a portion exposed to the air-gap.
Abstract:
A semiconductor structure includes a substrate including a first side and a second side disposed opposite to the first side and configured to receive an electromagnetic radiation, a barrier layer disposed over the second side of the substrate, a color filter disposed over the barrier layer, and a grid surrounding the color filter and disposed over the barrier layer, wherein the barrier layer is configured to absorb or reflect non-visible light in the electromagnetic radiation, and the barrier layer is disposed between the grid and the substrate.
Abstract:
Among other things, one or more support structures for integrated circuitry and techniques for forming such support structures are provided. A support structure comprises one or more trench structures, such as a first trench structure and a second trench structure formed around a periphery of integrated circuitry. In some embodiments, one or more trench structures are formed according to partial substrate etching, such that respective trench structures are formed into a region of a substrate. In some embodiments, one or more trench structures are formed according to discontinued substrate etching, such that respective trench structures comprise one or more trench portions separated by separation regions of the substrate. The support structure mitigates stress energy from reaching the integrated circuitry, and facilitates process-induced charge release from the integrated circuitry.