Abstract:
A packaged semiconductor die includes a semiconductor die coupled to a die pad. The semiconductor die has a front side containing copper leads, a copper seed layer coupled to the copper leads, and a nickel alloy coating coupled to the copper seed layer. The nickel alloy includes tungsten and cerium (NiWCe). The packaged semiconductor die may also include wire bonds coupled between leads of a lead frame and the copper leads of the semiconductor die. In addition, the packaged semiconductor die may be encapsulated in molding compound. A method for fabricating a packaged semiconductor die. The method includes forming a copper seed layer over the copper leads of the semiconductor die. In addition, the method includes coating the copper seed layer with a nickel alloy. The method also includes singulating the semiconductor wafer to create individual semiconductor die and placing the semiconductor die onto a die pad of a lead frame. In addition the method includes wire bonding the leads of a lead frame to the copper leads of the semiconductor die and then encapsulating the die in molding compound.
Abstract:
A microelectronic device is formed by thinning a substrate of the microelectronic device from a die attach surface of the substrate, and forming a copper-containing layer on the die attach surface of the substrate. A protective metal layer is formed on the copper-containing layer. Subsequently, the copper-containing layer is attached to a package member having a package die mount area. The protective metal layer may optionally be removed prior to attaching the copper-containing layer to the package member. Alternatively, the protective metal layer may be left on the copper-containing layer when the copper-containing layer is attached to the package member. A structure formed by the method is also disclosed.
Abstract:
An integrated power package includes a substrate having a first surface and an integrated circuit located within the substrate. At least one electrical conductor is located between the first surface and another point on the substrate. At least one transistor is electrically and mechanically coupled to the at least one first conductor. A support structure is electrically and mechanically coupled to the at least one transistor, wherein the at least one transistor is located between the first surface of the substrate and the support structure.
Abstract:
A method for fabricating a micro-electro-mechanical system (MEMS) provides a semiconductor chip having a cavity with a radiation sensor MEMS. The opening of the cavity at the chip surface is covered by a plate transmissive to the radiation sensed by the MEMS. A patterned metal film is placed across the plate surface remote from the cavity.
Abstract:
In examples, a semiconductor package comprises a semiconductor die having an active surface; a conductive layer coupled to the active surface; and a polyimide layer coupled to the conductive layer. The package also comprises a conductive pillar coupled to the conductive layer and to the polyimide layer; a flux adhesive material coupled to the conductive pillar; and a solder layer coupled to the flux adhesive material. The package further includes a conductive terminal coupled to the solder layer and exposed to a surface of the package, the active surface of the semiconductor die facing the conductive terminal.
Abstract:
A method for manufacturing a package includes positioning a copper layer above a die. A zinc layer is positioned on the copper layer. The zinc and copper layers are then heated to produce a brass layer, the brass layer abutting the copper layer. Further, a polymer layer is positioned abutting the brass layer.
Abstract:
A packaged semiconductor die includes a semiconductor die coupled to a die pad. The semiconductor die has a front side containing copper leads, a copper seed layer coupled to the copper leads, and a nickel alloy coating coupled to the copper seed layer. The nickel alloy includes tungsten and cerium (NiWCe). The packaged semiconductor die may also include wire bonds coupled between leads of a lead frame and the copper leads of the semiconductor die. In addition, the packaged semiconductor die may be encapsulated in molding compound. A method for fabricating a packaged semiconductor die. The method includes forming a copper seed layer over the copper leads of the semiconductor die. In addition, the method includes coating the copper seed layer with a nickel alloy. The method also includes singulating the semiconductor wafer to create individual semiconductor die and placing the semiconductor die onto a die pad of a lead frame.
Abstract:
In a described example, an apparatus includes: a package substrate having a die mount portion and lead portions; at least one semiconductor device die over the die mount portion of the package substrate, the semiconductor device die having bond pads on an active surface facing away from the package substrate; electrical connections between at least one of the bond pads and one of the lead portions; a post interconnect over at least one of the bond pads, the post interconnect extending away from the active surface of the semiconductor device die; and a dielectric material covering a portion of the package substrate, the semiconductor device die, a portion of the post interconnect, and the electrical connections, forming a packaged semiconductor device, wherein the post interconnect extends through the dielectric material and had an end facing away from the semiconductor device die that is exposed from the dielectric material.
Abstract:
A system in a package (SIP) includes carrier layer regions that have a dielectric material with a metal post therethrough, where adjacent carrier layer regions define a gap. A driver IC die is positioned in the gap having nodes connected to bond pads exposed by openings in a top side of a first passivation layer, with the bond pads facing up. A dielectric layer is on the first passivation layer and carrier layer region that includes filled through vias coupled to the bond pads and to the metal post. A light blocking layer is on sidewalls and a bottom of the substrate. A first device includes a light emitter that has first bondable features. The light blocking layer can block at least 90% of incident light. The first bondable features are flipchip mounted to a first portion of the bond pads.
Abstract:
A semiconductor package includes an IC having circuitry configured for at least one function with some nodes connected to bond pads, with first metal posts on the bond pads, and dome support metal posts configured in a ring having a top rim defining an inner cavity with solder on the top rim and extending over an area of the inner cavity for providing a solder dome that covers the inner cavity to provide a covered air cavity over a portion of the circuitry. A leadframe includes a plurality of leads or lead terminals. The IC is flipchip attached with a solder connection to the leadframe so that the first metal posts are attached to the leads or the lead terminals. A mold compound provides encapsulation for the semiconductor package except on at least a bottom side of the leads or lead terminals.