Abstract:
A method includes generating a diffraction map from a plurality of target patterns, generating a favorable zone and an unfavorable zone from the diffraction map, placing a plurality of sub-resolution patterns in the favorable zone, and performing a plurality of geometric operations on the plurality of sub-resolution patterns to generate modified sub-resolution patterns. The modified sub-resolution patterns extend into the favorable zone, and are away from the unfavorable zone.
Abstract:
An extreme ultraviolet lithography (EUVL) method includes providing at least two phase-shifting mask areas having a same pattern. A resist layer is formed over a substrate. An optimum exposure dose of the resist layer is determined, and a latent image is formed on a same area of the resist layer by a multiple exposure process. The multiple exposure process includes a plurality of exposure processes and each of the plurality of exposure processes uses a different phase-shifting mask area from the at least two phase-shifting mask areas having a same pattern.
Abstract:
A method of enhancing a layout pattern includes determining a target layout pattern comprising a disk shape pattern associated with an opening. The method includes defining a polygon having a plurality of vertices on the disk shape pattern. The plurality of vertices coincide with a boundary of the disk shape pattern and the polygon is an initial layout pattern of the opening. The method includes performing an iterative correction of the initial layout pattern. The iterative correction includes projecting the layout pattern of the opening onto a substrate, determining an error between the target layout pattern and the projected layout pattern, and adjusting the layout pattern by moving the vertices of the polygon to generate a next iteration of the layout pattern. The method includes continuing the adjusting, projecting, and determining until a criterion is satisfied and a final iteration of the layout pattern of the opening is generated.
Abstract:
A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
Abstract:
A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
Abstract:
A method includes inspecting a mask to locate a defect region for a defect of the mask. A phase distribution of an aerial image of the defect region is acquired. A point spread function of an imaging system is determined. One or more repair regions of the mask are identified based on the phase distribution of the aerial image of the defect region and the point spread function. A repair process is performed to the one or more repair regions of the mask to form one or more repair features.
Abstract:
The present disclosure relates to a method of forming an EUV pellicle having an pellicle film connected to a pellicle frame without a supportive mesh, and an associated apparatus. In some embodiments, the method is performed by forming a cleaving plane within a substrate at a position parallel to a top surface of the substrate. A pellicle frame is attached to the top surface of the substrate. The substrate is cleaved along the cleaving plane to form a pellicle film comprising a thinned substrate coupled to the pellicle frame. Prior to cleaving the substrate, the substrate is operated upon to reduce structural damage to the top surface of substrate during formation of the cleaving plane and/or during cleaving the substrate. Reducing structural damage to the top surface of the substrate improves the durability of the thinned substrate and removes a need for a support structure for the pellicle film.
Abstract:
An out-of-band (OoB) suppression layer is applied on a reflective multiplayer (ML) coating, so as to avoid the OoB reflection and to enhance the optical contrast at 13.5 nm. A material having a low reflectivity at wavelength of 193-257 nm, for example, silicon carbide (SiC), is used as the OoB suppression layer. A method of fabricating an EUV mask having the OoB suppression layer and a method of inspecting an EUV mask having the OoB suppression are also provided.