摘要:
A control apparatus calculates a exhaust gas air-fuel ratio of a plurality of cylinders, in which the operation angle of an intake valve is set to a predetermined operation angle, e.g., a maximum operation angle, based on a value output from an air-fuel ratio sensor so as to minimize a variation in an fuel injection quantity between the plurality of cylinders by that exhaust gas air-fuel ratio. That is, the exhaust gas air-fuel ratio of the plurality of cylinders, in which the valve opening characteristics of the intake valve and an exhaust valve are set such that the intake air amount to be introduced into the plurality of cylinders is limited by the opening amount of a throttle valve, for example, and not limited by the valve opening characteristics of the intake valve or the exhaust valve is calculated, and the variation in the fuel injection quantity among the plurality of cylinders is then reduced by that exhaust gas air-fuel ratio. Then, the variation in valve opening characteristics among the cylinders is reduced.
摘要:
A control apparatus for an internal combustion engine provided with a fuel supply mechanism capable of adjusting a fuel supply amount includes a flow rate sensor that detects an intake air flow rate that represents a flow rate of air admitted into a combustion chamber of the internal combustion engine, a pressure sensor that detects a pressure of the air admitted into the combustion chamber of the internal combustion engine, a characteristic change estimation unit that estimates a characteristic change of the internal combustion engine in accordance with the intake air flow rate detected by the flow rate sensor and the intake air pressure detected by the pressure sensor, and a fuel supply mechanism control unit that controls the fuel supply mechanism. The fuel supply mechanism control unit controls the fuel supply mechanism such that the characteristic change in the internal combustion engine is compensated in accordance with an estimation performed by the characteristic change estimation unit.
摘要:
A control apparatus for an internal combustion engine provided with a fuel supply mechanism capable of adjusting a fuel supply amount includes a flow rate sensor that detects an intake air flow rate that represents a flow rate of air admitted into a combustion chamber of the internal combustion engine, a pressure sensor that detects a pressure of the air admitted into the combustion chamber of the internal combustion engine, a characteristic change estimation unit that estimates a characteristic change of the internal combustion engine in accordance with the intake air flow rate detected by the flow rate sensor and the intake air pressure detected by the pressure sensor, and a fuel supply mechanism control unit that controls the fuel supply mechanism. The fuel supply mechanism control unit controls the fuel supply mechanism such that the characteristic change in the internal combustion engine is compensated in accordance with an estimation performed by the characteristic change estimation unit.
摘要:
An electronic control unit sets a target valve actuation parameter in accordance with an operating state of an internal combustion engine, and controls a variable valve actuation mechanism such that an actual valve actuation parameter of an intake valve becomes equal to the target valve actuation parameter. The variable valve actuation mechanism changes a valve actuation parameter of the intake valve. From before an initial fuel injection is performed to when a starting process of the engine is completed, the electronic control unit sets the target valve actuation parameter to an engine starting valve actuation parameter at which the valve closing timing of the intake valve coincides with or is close to a bottom dead center of the intake valve.
摘要:
A valve characteristic changing mechanism is supplied with oil discharged from an electric oil pump in addition to oil discharged from a mechanical oil pump that is driven by an operation of an internal combustion engine. Driving of the electric oil pump is controlled such that a work rate of the electric oil pump increases as a temperature of the oil supplied to the valve characteristic changing mechanism increases, or as a viscosity of the oil is reduced.
摘要:
A device for controlling an internal combustion engine, comprising a variable valve mechanism for varying opening areas (valve lift) or the working angles (valve-opening periods) of at least either the intake valves or the exhaust valves, wherein a pressure in the cylinder is calculated based on the opening area or the working angle of at least either the intake valve or the exhaust valve varied by the variable valve mechanism, and the internal combustion engine is controlled based on the pressure in the cylinder. Upon calculating the pressure in the cylinder based on the opening areas or the working angles of the intake and exhaust valves, it is possible to more suitably control the internal combustion engine based not only upon the peak combustion pressure in the cylinder like when a combustion pressure sensor is used but also upon a pressure in the cylinder at a moment other than the peak combustion pressure.
摘要:
A device for controlling an internal combustion engine, comprising a variable valve mechanism for varying opening areas (valve lift) or the working angles (valve-opening periods) of at least either the intake valves or the exhaust valves, wherein a pressure in the cylinder is calculated based on the opening area or the working angle of at least either the intake valve or the exhaust valve varied by the variable valve mechanism, and the internal combustion engine is controlled based on the pressure in the cylinder. Upon calculating the pressure in the cylinder based on the opening areas or the working angles of the intake and exhaust valves, it is possible to more suitably control the internal combustion engine based not only upon the peak combustion pressure in the cylinder like when a combustion pressure sensor is used but also upon a pressure in the cylinder at a moment other than the peak combustion pressure.
摘要:
In an estimation apparatus of an air intake flow for an internal combustion engine, an air intake flow rate fed into a portion just upstream of an intake valve at a predetermined timing before starting of fuel injection is calculated based on an output of an air flow meter. A variance in the air intake flow rate caused by the change in the intake pressure at the portion just upstream of the intake vale at the predetermined timing is calculated based on an output of a pressure sensor. The calculated air intake flow rate is added to the variance to obtain an air intake flow rate fed into a cylinder at the predetermined timing. The air intake flow rate fed into the cylinder is corrected to an air intake flow rate required for estimating an actual air intake flow based on an amount of change in the air intake flow rate fed into the cylinder at the predetermined timing.
摘要:
An engine is operated in a homogeneous charge combustion mode or a stratified charge combustion mode. An intensive target throttle angle is computed based on the running state of the engine, regardless of a combustion mode which is underway. The intensive target throttle angle reflects an engine torque which is demanded at the time of executing the homogeneous charge combustion mode. At the time of executing the homogeneous charge combustion mode, the degree of opening of a throttle valve is adjusted based on the intensive target throttle angle to adjust the engine torque. At the time of executing the stratified charge combustion mode, a fuel injection amount is adjusted based on the intensive target throttle angle to adjust the engine torque. In other words, even in case where either of the two combustion modes is executed, the engine torque is adjusted based on the intensive target throttle angle. It is therefore possible to easily match engine torque characteristics between these different combustion modes.
摘要:
A direct-injection internal combustion engine can smoothly switch and transition between a first operation mode and a second operation mode according to an operating condition of the engine. An engine control amount in the first operation mode is calculated differently from an engine control amount in the second operation mode. However, even if the engine control amount requires correction only in the second operation mode, calculation of a correction amount is made during the first operation mode as well. During a transition from the first operation mode to the second operation mode, the correction amount calculated during the first operation mode is taken into account in calculating an engine control amount. As the correction amount is already available at the time of transition, a suitable engine control amount can be immediately obtained.