摘要:
A shift control system for an automatic transmission comprises: a first transmission assembly and a second transmission assembly connected in series to each other and individually having frictional engagement elements to be engaged, if subjected to oil pressures, and accumulators for regulating the oil pressures to be applied to the frictional engagement elements, so as to set any one of gear stages by applying the frictional engagement elements of one of the transmission assemblies to shift up the one transmission assembly and by releasing the frictional engagement elements of the other transmission assembly to shift down the other transmission assembly. The shift control system further comprises: a predictor for predicting whether or not the end of the upshift is to be delayed from that of the downshift; and a back pressure controller for boosting up the back pressures of the individual accumulators connected to the frictional engagement elements, simultaneously, on the basis of the fact that the predictor has predicted the delay of the end of the upshift from that of the downshift.
摘要:
A shift control system and method for an automatic transmission connected to an engine having engine intake controller includes a detector for detecting the start of an inertia phase at the time of a shift. An intake changing device outputs a first command signal for throttling the opening of the intake controller to such an extent that the engine torque is unvaried for a time period from the output of a command signal for the shift to the start of the inertia phase, and a second command signal for further throttling the opening of the intake controlling, simultaneously as the start of the inertia phase is detected, to drop the engine torque.
摘要:
A supplying port connecting to a supplying-side hydraulic pressure is arranged in a lock-up control valve. When the lock-up relay valve is switched ON (right half position), a supplying hyraulic pressure is supplied to a second oil chamber through an oil passage, led to a first oil chamber through an orifice and drained to a draining hydraulic oil passage through the oil passage. At this state in the lock-up control valve an inner pressure of the first oil chamber operates on a chamber through the oil passage, while an inner pressure of the second oil chamber operates on a chamber through the oil passage, and a controlling pressure from a linear solenoid valve operates on the controlling chamber. When the controlling pressure from the controlling chamber decreases by a deceleration of a vehicle speed, a valve closes a draining oil port and a drain port and increases an inner pressure of the first oil chamber. At this state when the hydraulic pressure of the second oil chamber increases by the contraction of the outer configuration of a torque convertor by a decrease of the centrifugal force, the draining oil port is connected to the supplying port and the hydraulic pressure is supplied to the first oil chamber to increase the hydraulic pressure of the chamber.
摘要:
A reverse-engaging condition is prevented by a reverse inhibit valve operated by the solenoid valve even if a shift lever is operated to a reverse range at forward running. A solenoid valve controlling a 1-2 shift valve is "OFF" when controlling a manual valve to a reverse range under 7 km/h of a vehical speed. The reverse inhibit valve is at a right-half position. Therefore, the hydraulic pressure from the reverse range port of the manual valve runs through oil passages and supplied to the hydraulic servos. At forward running over 7 km/h the solenoid valve is switched "ON", the reverse inhibit valve is switched to a left-half position and oil passages are isolated. When the solenoid valve is switched at forward running, a hydraulic pressure from a R range port of the manual valve does not operate on a difference of cross sectional areas of lands of the reverse inhibit valve, so that the reverse inhibit valve is kept at the right-half position together with a pressing force of a spring therein.
摘要:
A hydraulic breather for a valve body in an automatic transmission, in which is disposed hydraulic equipment, for example, linear solenoid valves. The breather separates oil in the oil pan from the oil in the hydraulilc equipment when the automatic transmission is at work while allowing clean oil from the oil pan to enter the hydraulic equipment when the automatic transmission is at rest. The breating hole is provided in the form of an oil passage extending from hydraulic equipment within the valve body and includes an open-end section disposed in an upper part of the valve body. The open-end is located at a point higher than the working oil level in the automatic transmission. When the automatic transmission is at work, oil in the oil pan is used to lubricate, so the oil level is at its lowest level and the open-end section is above that oil level and thereby connects with air space in the valve body. When the automatic transmission is at rest, the oil level in the oil pan rises and oil from the oil pan enters into the breathing hole.
摘要:
In a hydraulic control system for an automatic transmission comprising a hydraulic servomotor C-2 for a clutch or brake adapted to engage and disengage necessary rotary components of a planetary gear mechanism, and a select valve for selectively supplying hydraulic pressure to the hydraulic servomotor C-2 dependent on two transmission states, the select valve has two input ports selectively supplied with hydraulic pressure dependent on the two transmission states and one output port for outputting hydraulic pressure to the hydraulic servomotor C-2, a first orifice is disposed between the output port and the hydraulic servomotor C-2, and a second orifice is disposed on the same side as either of the two input ports.Upon an upshift from the 2nd to the 3rd speed in the D range condition, a shift valve is changed over such that the line pressure is supplied to one input port of the select valve via a line pressure output port and the second orifice to move a ball valve body in the select valve. Thus, the line pressure is supplied to the hydraulic servomotor C-2 via the output port of the select valve and the first orifice.In the R range condition, a manual valve is changed over such that its ports p and d are communicated with each other, while its port a is blocked off. The line pressure is hence supplied from the line pressure output port to another input port of the select valve for moving the ball valve body, so that the line pressure is supplied to the hydraulic servomotor C-2 via the first orifice.Therefore, at the time of an upshift from the 2nd to the 3rd speed, since the line pressure is supplied to the hydraulic servomotor C-2 while being restricted through both the second orifice and the first orifice, the clutch is gradually connected so as to prevent the occurrence of a shift shock. At the time of a shift into the reverse position, since the line pressure is supplied to the hydraulic servomotor C-2 while being restricted through only the first orifice, the clutch is more quickly connected so as to prevent a time lag in speed change.
摘要:
Hydraulic pressure which is regulated by a pressure control valve (linear solenoid valve) is applied to a hydraulic servo of a brake which is actuated when an engine-brake is effected. When the engine-brake is effected, a hydraulic pressure which is modulated by a modulator valve controlled by the linear solenoid valve is applied to the brake hydraulic servo. The pressure control valve provides high hydraulic pressure when vehicle speed is high based on signals from a speed sensor, and provides low hydraulic pressure when vehicle speed is low based on signals from the speed sensor, so that an engine-brake force is adequately controlled in accordance with vehicle speed. Furthermore, if a foot brake sensor is employed, the hydraulic pressure in accordance with vehicle speed can be made low when the engine-brake is effected with the foot brake applied. Based on signals from a front wheel rotation sensor and a rear wheel rotation sensor, the control unit calculates a rotational difference, so that the engine-brake force can be made low when the rotational difference is large.
摘要:
A slippage detection system for a continuously variable transmission capable of continuously changing a gear ratio between an input rotation speed of an input member and an output rotation speed of an output member is provided. The slippage detection system calculate a sum of differences between an actual gear ratio calculated from measurement values of the input rotation speed and the output rotation speed and a target gear ratio over a predetermined period of time, and determines slippage in the continuously variable transmission based on the sum of differences.
摘要:
A declaration control apparatus and method for a vehicle, which performs deceleration control such that a deceleration acting on the vehicle becomes equal to a target deceleration by an operation of a brake system which applies a braking force to the vehicle and a shift operation which shifts a transmission of the vehicle into a relatively low speed or speed ratio, increases the target deceleration over time at a predetermined gradient to a predetermined value when a determination that there is a need to shift the transmission into a relatively low speed or speed ratio has been made, and after the target deceleration reaches the predetermined value, maintains the target deceleration at a generally constant value. As a result, a deceleration transitional characteristic of the vehicle is able to be improved.
摘要:
A belt clamping pressure setting device includes: a belt clamping pressure setting unit that sets a belt clamping pressure of a continuously variable transmission that includes an input-side pulley, an output-side pulley, and a belt running between the input-side pulley and the out-side pulley; an input revolution detection sensor that detects a number of input revolutions of the input-side pulley; an output revolution detection sensor that detects a number of output revolutions of the output-side pulley; an input torque detection unit that detects an input torque to the input-side pulley; a reference clamping pressure computing unit that computes a reference clamping pressure, based on the number of input revolutions detected by the input revolution detection sensor, the number of output revolutions detected by the output revolution detection sensor, and the input torque detected by the input torque detection unit; and a belt clamping pressure computing unit that computes the belt clamping pressure to be set by the belt clamping pressure setting unit based on the reference clamping pressure and a correction value computed in accordance with the number of input revolutions detected by the input revolution detection sensor or a torque fluctuation frequency obtained from the number of input revolutions.