摘要:
This invention includes methods of forming layers comprising epitaxial silicon, and field effect transistors. In one implementation, a method of forming a layer comprising epitaxial silicon comprises epitaxially growing a silicon-comprising layer from an exposed monocrystalline material. The epitaxially grown silicon comprises at least one of carbon, germanium, and oxygen present at a total concentration of no greater than 1 atomic percent. In one implementation, the layer comprises a silicon germanium alloy comprising at least 1 atomic percent germanium, and further comprises at least one of carbon and oxygen at a total concentration of no greater than 1 atomic percent. Other aspects and implementations are contemplated.
摘要:
The invention includes deposition apparatuses configured to monitor the temperature of a semiconductor wafer substrate by utilizing conduits which channel radiation from the substrate to a detector/signal processor system. In particular aspects, the temperature of the substrate can be measured while the substrate is spinning within a reaction chamber. The invention also includes deposition apparatuses in which flow of mixed gases is controlled by mass flow controllers provided downstream of the location where the gases are mixed and/or where flow of gases is measured with mass flow measurement devices provided downstream of the location where the gases are mixed. Additionally, the invention encompasses deposition apparatuses in which mass flow controllers and/or mass flow measurement devices are provided upstream of a header which splits a source gas into multiple paths directed toward multiple different reaction chambers.
摘要:
The invention includes methods of forming metal silicide. A layer consisting essentially of one or more metal nitrides is formed directly against a silicon-containing region. A layer comprising one or more metals is formed over the one or more metal nitrides. Silicon is transferred from the silicon-containing region, through the one or more metal nitrides, and to the one or more metals to convert at least some of the one or more metals into metal silicides. In particular aspects, titanium is formed over tantalum nitride, and the silicon is transferred into the titanium to convert the titanium into titanium silicide. The invention also includes semiconductor constructions having a layer consisting essentially of titanium silicide directly against a layer consisting essentially of tantalum nitride.
摘要:
The invention includes methods of forming epitaxial silicon-comprising material and methods of forming vertical transistors. In one implementation, a method of forming epitaxial silicon-comprising material includes providing a substrate comprising monocrystalline material. A first portion of the monocrystalline material is outwardly exposed while a second portion of the monocrystalline material is masked. A first silicon-comprising layer is epitaxially grown from the exposed monocrystalline material of the first portion and not from the monocrystalline material of the masked second portion. After growing the first silicon-comprising layer, the second portion of the monocrystalline material is unmasked. A second silicon-comprising layer is then epitaxially grown from the first silicon-comprising layer and from the unmasked monocrystalline material of the second portion. Other aspects and implementations are contemplated.
摘要:
The invention includes a method for selective deposition of semiconductor material. A substrate is placed within a reaction chamber. The substrate comprises a first surface and a second surface. The first and second surfaces are exposed to a semiconductor material precursor under conditions in which growth of semiconductor material from the precursor comprises a lag phase prior to a growth phase, and under which it takes longer for the growth phase to initiate on the second surface than on the first surface. The exposure of the first and second surfaces is conducted for a time sufficient for the growth phase to occur on the first surface, but not long enough for the growth phase to occur on the second surface.
摘要:
Dielectric materials having implanted metal sites and methods of their fabrication have been described. Such materials are suitable for use as charge-trapping nodes of non-volatile memory cells for memory devices. By incorporating metal sites into dielectric charge-trapping materials using an ammonia plasma and a metal source in contact with the plasma, improved programming and erase voltages may be facilitated.
摘要:
Methods of fabricating charge storage transistors are described, along with apparatus and systems that include them. In one such method, a pillar of epitaxial silicon is formed. At least first and second charge storage nodes (e.g., floating gates) are formed around the pillar of epitaxial silicon at different levels. A control gate is formed around each of the charge storage nodes. Additional embodiments are also described.
摘要:
Methods of fabricating 3D charge-trap memory cells are described, along with apparatus and systems that include them. In a planar stack formed by alternate layers of electrically conductive and insulating material, a substantially vertical opening may be formed. Inside the vertical opening a substantially vertical structure may be formed that comprises a first layer, a charge-trap layer, a tunneling oxide layer, and an epitaxial silicon portion. Additional embodiments are also described.
摘要:
Memory devices utilizing memory cells including a resistive element and a diode coupled in series between two conductors. The diodes include a ruthenium material and a silicon material. The diodes further include an interface on the silicon material of ruthenium or ruthenium silicide. A ruthenium silicide interface may be a polycrystalline ruthenium silicide.
摘要:
A memory cell has a tunnel dielectric over a first silicon-containing material, a second silicon-containing material over the tunnel dielectric, a first silicon oxide layer on an edge of the second silicon-containing material and extending across a first portion of an edge of the tunnel dielectric, and a second silicon oxide layer on a side of the first silicon-containing material and extending across a second portion of the edge of the tunnel dielectric. The first and second silicon oxide layers are two distinct layers and are in contact with the tunnel dielectric layer.