Abstract:
A base current controlling circuit for a power bipolar transistor comprising a first controlling device giving the base current only two states which are a "conduction" state and a "cut-off" state, and a second controlling device adjusting the condition of the power bipolar transistor to a predetermined preferable condition by controlling the base current value in response to a result of detection of a condition of the power bipolar transistor.
Abstract:
A method of optically checking the appearances of chips and sorting the chips comprises the steps of feeding chips onto chip-passage body to cause the chips to run on the chip-passage body in a predetermined direction; during the running of the chips on the chip-passage body, individually separating the chips to stop the chips one by one at each of two predetermined checking positions; irradiating light obliquely and straightly with respect to a chip at one of the predetermined checking positions to pick up an optical image of one of undersurface and top surface sides of the chip as a video signal by means of a first TV camera; irradiating light obliquely and straightly with respect to the chip at the other of the predetermined checking positions to pick up an optical image of the other of the undersurface and top surface sides of the chip as a video signal by means of a second TV camera; sending the video signals to image processing sections, each of which includes at least an analog-to-digital conversion unit, a video memory and a central processing unit, to process the video signals in the image processing sections and obtain data on the appearance of the chip and a tilt angle of the chip on each of the predetermined checking positions of the chip-passage body, thereby checking on the basis of the data whether the chip is acceptable or defective in its appearance; and thereafter sorting chips on the basis of the check results. Also, an apparatus for optically checking the appearances of chips and sorting the chips is disclosed.
Abstract:
A coil apparatus having a divided winding conformation and a manufacturing method of the coil apparatus which can prevent a winding from collapsing while achieving a reduction in size of a core and simplification of a structure. A coil apparatus includes a ferrite core and a coil provided around the core. The coil includes at least a first coil portion and a second coil portion, and a boundary end surface of the first coil portion on the second coil portion side is inclined in such a manner that its inner peripheral side is closer to the second coil portion than its outer peripheral side. Further, a boundary end surface of the second coil portion on the first coil portion side is inclined in such a manner that its outer peripheral side is closer to the first coil portion than its inner peripheral side.
Abstract:
A shock absorber has a function of transmitting electric power between sprung and unsprung electrical components. The shock absorber includes a pair of conductive elements. The conductive elements are coupled electrically to each other. One of the conductive elements is attached to the rod of the shock absorber. The other conductive element is mounted within the tube.
Abstract:
An electrical power converter comprises a first direct current line connected to a first direct current source, a second direct current line connected to a second direct current source, an alternating current line connected to an alternating current motor, a controller, and a pulse generator. The controller determines a required torque of the alternating current motor. The controller also determines a voltage command value that substantially minimizes a copper loss of the alternating current motor while providing the required torque of the alternating current motor. The pulse generator generates an output voltage according to the voltage command value at the alternating current output.
Abstract:
A power conversion system for converting a dc voltage to a pulsed ac voltage includes a dc voltage source providing three or more electric potentials, and a switching circuit arranged to connect one of the potentials selectively to an output terminal. A controller produces a pulsed ac output voltage at the output terminal from the potentials of the dc voltage source by controlling an on time for connecting each of the potentials to the output terminal.
Abstract:
A power conversion system for converting a dc voltage to a pulsed ac voltage includes a dc voltage source providing three or more electric potentials, and a switching circuit arranged to connect one of the potentials selectively to an output terminal. A controller produces a pulsed ac output voltage at the output terminal from the potentials of the dc voltage source by controlling an on time for connecting each of the potentials to the output terminal.
Abstract:
A shock absorber has a function of transmitting electric power between sprung and unsprung electrical components. The shock absorber includes a pair of conductive elements. The conductive elements are coupled electrically to each other. One of the conductive elements is attached to the rod of the shock absorber. The other conductive element is mounted within the tube.
Abstract:
A motor control apparatus comprises a fundamental current control device that controls a fundamental current in a 3-phase AC motor in an orthogonal coordinate system constituted of a d-axis and a q-axis rotating in synchronization with the rotation of the 3-phase AC motor, a higher harmonic current control device that controls a higher harmonic current in the motor in an orthogonal coordinate system constituted of a dh-axis and a qh-axis rotating at a frequency that is an integral multiple of the frequency of the fundamental component of the current flowing to the motor, an estimating device that estimates the level of the harmonic speed electromotive force in the motor in the dhqh-axis coordinate system and a compensating device that compensates the harmonic speed electromotive force estimated by the estimating device.
Abstract:
A shock when switching between the motive force of a motor and an engine is avoided. A first electrical motor mechanically connected to an engine and a second electrical motor connected mechanically to an engine through a clutch is provided. In a hybrid vehicle in which motive force is transmitted to the drive wheels through a transmission from a second electric motor, it is decided whether or not to release the clutch based on the vehicle speed detected value and the required motive force detected value. The engine output at that time is estimated. Thus if it is decided to release the clutch, the output of the second electrical motor is controlled so that the generated torque corresponds to said estimated output. The output of the first electrical motor is controlled so that the torque generated by the second electrical motor is absorbed. Hence the sum of both outputs is approximately 0. In this way, there is no shock when the clutch is released and the switch is made from an engine brake due to the engine to a generator brake due to the second electrical motor and driving performance is enhanced.