摘要:
The present disclosure provides a semiconductor device that includes a transistor including a substrate, a source, a drain, and a gate, and a fuse stacked over the transistor. The fuse includes an anode contact coupled to the drain of the transistor, a cathode contact, and a resistor coupled to the cathode contact and the anode contact via a first Schottky diode and a second Schottky diode, respectively. A method of fabricating such semiconductor devices is also provided.
摘要:
Provided is a high voltage semiconductor device. The high voltage semiconductor device includes a substrate that includes a doped well disposed therein. The doped well and the substrate have opposite doping polarities. The high voltage semiconductor device includes an insulating device disposed over the doped well. The high voltage semiconductor device includes an elongate resistor disposed over the insulating device. A non-distal portion of the resistor is coupled to the doped well. The high voltage semiconductor device includes a high-voltage junction termination (HVJT) device disposed adjacent to the resistor.
摘要:
A high voltage (HV) device includes a well region of a first dopant type disposed in a substrate. A first well region of a second dopant type is disposed in the well region of the first dopant type. An isolation structure is at least partially disposed in the well region of the first dopant type. A first gate electrode is disposed over the isolation structure and the first well region of the second dopant type. A second well region of the second dopant type is disposed in the well region of the first dopant type. The second well region of the second dopant type is spaced from the first well region of the second dopant type. A second gate electrode is disposed between and over the first well region of the second dopant type and the second well region of the second dopant type.
摘要:
A high voltage MOS transistor has a thermally-driven-in first doped region and a second doped region that form a double diffused drain structure. Boundaries of the first doped region are graded. A gate-side boundary of the first doped region extends laterally below part of the gate electrode. The second doped region is formed within the first doped region. A gate-side boundary of the second doped region is separated from a closest edge of the gate electrode by a first spaced distance. The gate-side boundary of the second doped region is separated from a closest edge of the spacer by a second spaced distance. The first spaced distance is greater than the second spaced distance. An isolation-side boundary of the second doped region may be separated from an adjacent isolation structure by a third spaced distance.
摘要:
A semiconductor structure includes a first well region of a first conductivity type overlying a substrate, a second well region of a second conductivity type opposite the first conductivity type overlying the substrate and laterally adjoining the first well region, a third well region of the second conductivity type adjacent and spaced apart from the first well region, a first deep well region of the second conductivity type underlying at least portions of the first and the second well regions, a second deep well region of the second conductivity type underlying the third well region and spaced apart from the first deep well region, an insulation region in the first well region, a gate dielectric extending from over the insulation region to over the second well region, and a gate electrode on the gate dielectric.
摘要:
A process for forming an isolation region comprised of shallow trench-deep trench configuration, wherein a smooth top surface topography is obtained for the isolation region and for adjacent active device regions in the semiconductor substrate, has been developed. The process features initially forming an insulator filled shallow trench shape, planarized via a first chemical mechanical polishing procedure, allowing reduced complexity to be realized during the subsequent formation of a narrow diameter, deep trench opening, in the insulator filled shallow trench shape and in an underlying portion of semiconductor substrate. Formation of a recessed polysilicon plug located in the bottom portion of the deep trench opening is followed by formation of an insulator plug located in a top portion of the deep trench opening, overlying the recessed polysilicon plug. This is accomplished via photolithographic and selective dry definition procedures, and a second chemical mechanical polishing procedure, resulting in a filled, deep trench opening exhibiting a smooth top surface topography.
摘要:
A process for forming an isolation region comprised of shallow trench-deep trench configuration, wherein a smooth top surface topography is obtained for the isolation region and for adjacent active device regions in the semiconductor substrate, has been developed. The process features initially forming an insulator filled shallow trench shape, planarized via a first chemical mechanical polishing procedure, allowing reduced complexity to be realized during the subsequent formation of a narrow diameter, deep trench opening, in the insulator filled shallow trench shape and in an underlying portion of semiconductor substrate. Formation of a recessed polysilicon plug located in the bottom portion of the deep trench opening is followed by formation of an insulator plug located in a top portion of the deep trench opening, overlying the recessed polysilicon plug. This is accomplished via photolithographic and selective dry definition procedures, and a second chemical mechanical polishing procedure, resulting in a filled, deep trench opening exhibiting a smooth top surface topography.
摘要:
During the conventional manufacture of HBTs, implant damage occurs which leads to enhanced internal base diffusion. This problem has been overcome by making the base and base contact area from a single, uniformly doped layer of silicon-germanium. Instead of an ion implant step to selectively reduce the resistance of this layer away from the base, a layer of polysilicon is selectively deposited (using selective epi deposition) onto only that part. Additionally, the performance of the polysilicon emitter is enhanced by means a brief thermal anneal that drives a small amount of opposite doping type silicon into the SiGe base layer.
摘要:
A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.