Abstract:
A method for improving fuel efficiency and friction reduction properties, while maintaining or improving deposit control, in an engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and a tungsten organic complex as a minor component. Fuel efficiency and friction reduction properties are improved and deposit control is maintained or improved as compared to friction reduction properties and deposit control achieved using a lubricating engine oil containing a minor component other than the tungsten organic complex. A lubricating engine oil having a composition comprising a lubricating oil base stock as a major component, and a tungsten organic complex as a minor component. The lubricating engine oils are useful in internal combustion engines including direct injection, gasoline and diesel engines.
Abstract:
A method for improving fuel efficiency and reducing frictional properties while maintaining or improving deposit control, in an engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition including a lubricating oil base stock as a major component, and a friction modifier mixture as a minor component. Fuel efficiency and frictional properties are improved and deposit control is maintained or improved as compared to frictional properties and deposit control achieved using a lubricating engine oil containing a minor component other than the friction modifier mixture. A lubricating engine oil having a composition including a lubricating oil base stock as a major component, and a friction modifier mixture as a minor component. The lubricating engine oils are useful in internal combustion engines including direct injection, gasoline and diesel engines.
Abstract:
A lubrication fluid including cyclic hydrocarbons in combination with dimethylsilicone fluids and/or di-alkyl or di-cycloalkyl or alkyl-cycloalkyl, or mixtures thereof, and di-end-capped polypropylene oxides or highly branched esters to produce very high traction elastohydrodynamic (EHD) traction fluids and to modify the low temperature viscometric properties of the mixed fluids without adversely affecting the very high elastohydrodynamic shear strength or traction coefficients of the very high shear strength cyclic hydrocarbon fluid in the resulting mixed fluids with improved low temperature viscosity.
Abstract:
A lubricating oil composition comprising (a) a major amount of an oil of lubricating viscosity, (b) an ashless dispersant, (c) at least one metal-containing detergent, (d) an antioxidant, and (e) an anti-wear agent, wherein the lubricating oil composition is free of any zinc dialkyl dithiophosphate compound and is substantially free of any phosphorus content is disclosed.
Abstract:
The present invention relates to an electrorheological composition with corrosion-inhibiting properties, methods for the production thereof and the use thereof.
Abstract:
The passage of a container along a conveyor is lubricated by applying to the container or conveyor a mixture of a water-miscible silicone material and a water-miscible lubricant. The mixture can be applied in relatively low amounts, to provide thin, substantially non-dripping lubricating films. In contrast to dilute aqueous lubricants, the lubricants of the invention provide drier lubrication of the conveyors and containers, a cleaner conveyor line and reduced lubricant usage, thereby reducing waste, cleanup and disposal problems.
Abstract:
The passage of a container along a conveyor is lubricated by applying to the container or conveyor a mixture of a water-miscible silicone material and a water-miscible lubricant. The mixture can be applied in relatively low amounts, to provide thin, substantially non-dripping lubricating films. In contrast to dilute aqueous lubricants, the lubricants of the invention provide drier lubrication of the conveyors and containers, a cleaner conveyor line and reduced lubricant usage, thereby reducing waste, cleanup and disposal problems.
Abstract:
The present invention is able to provide a lubricating oil composition having excellent thermal/chemical stability even when used for a compression refrigerating machine using a saturated fluorinated hydrocarbon refrigerant having a low carbon number and a low global warming potential, by using a refrigerant containing a saturated fluorinated hydrocarbon having from 1 to 3 carbon atoms, which uses, as a base oil, an oxygen-containing organic compound composed of at least one member selected from a polyoxyalkylene glycol, a polyvinyl ether, a copolymer of a poly(oxy)alkylene glycol and a polyvinyl ether, a copolymer of a poly(oxy)alkylene glycol monoether and a polyvinyl ether, and a polyol ester, each having a water content of not more than 500 ppm by mass.
Abstract:
A coating composition for imparting a hydrophobic film on a target surface is provided that, includes an oil of a silicone oil or a fluoropolymer oil or a combination thereof, a resin, and a dry lubricant. A solvent is present to form a solution of the oil and resin. A coating is imparted to an applicator that in turn can transfer the coating as a hydrophobic film. The coating composition is stable and able to impart hydrophobic film even after storage for several weeks at elevated temperature. The coating composition does so through the exclusion of synthetic waxes especially including silicone waxes. A kit is also provided that includes a wiper blade having the above coating composition applied along with instructions for the securement of the wiper blade to a vehicle to impart the hydrophobic film to a vehicle windshield contacted by the wiper blade.
Abstract:
Provided is a lubricating oil composition comprising: (a) a major amount of an oil of lubricating viscosity; and (b) one or more borated alkaline earth metal alkyltoluene sulfonate detergents; wherein the lubricating oil composition comprises no more than about 0.20 wt. % of phosphorus and no more than about 0.50 wt. % of sulfur.