Abstract:
A method of constructing a wire rope from plural outer strands and a core, the core having one or more core strands, each of the one or more core strands having plural core wires, the method comprising: swaging the core to laterally compress the core to an extent sufficient to cause concave deformation of at least some of the plural core wires; and closing the plural outer strands over the core to produce the wire rope.
Abstract:
A metal cord has cylindrical layers formed of an internal layer, an intermediate layer, and an external layer. The in internal layer includes M threads. The intermediate layer includes N threads wound in a helix around the internal layer. The external layer includes P threads wound in a helix around the intermediate layer. An inter-thread distance, D2, between the threads of the intermediate layer is greater than or equal to 25 μm. An inter-thread distance, D3, between the threads of the external layer is greater than or equal to 25 μm.
Abstract:
Hybrid rope (20) comprising a core element (22) containing high modulus fibers surrounded by at least one outer layer (24) containing wirelike metallic members (26). The core element (22) is coated (23) with a thermoplastic polyurethane or a copolyester elastomer, preferably the copolyester elastomer containing soft blocks in the range of 10 to 70 wt %. The coated material (23) on the inner core element (22) is inhibited to be pressed out in-between the wirelike members (26) of the hybrid rope (20) and the hybrid rope (20) has decreased elongation and diameter reduction after being in use.
Abstract:
J strands form a core. K outer strands are wound around it in a helix with pitch PK, each having a cord with an L wire inner layer of diameter d1, and an M wire outer layer of diameter d2, wound around the inner layer in a helix with pitch p2; with (in mm): 0.10
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. during its manufacture comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a sheathing step in which the core (C1) is sheathed with a rubber composition named “filling rubber”, in the uncrosslinked state; an assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” (C1+C2); an assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2); a final twist-balancing step.
Abstract:
A hybrid cord is presented for use in the reinforcement of elastomers. The hybrid cord is characterized by having a core steel filament, a first layer of one or more nonmetallic filaments which are wrapped about the steel filament in the core, and a second layer of from 4 to 12 steel filaments which are wrapped about the first layer.
Abstract:
A sound-proof geared or toothed cable A which comprises a core member 1 made of a twisted metal wires, teeth 2 consisting of at least one metal wire spirally wound around a peripheral surface of the core member 1, and a synthetic resin or rubber made tube 3 which is closely spirally wound between the teeth 2, and an outer surface of which protrudes externally of an outer surface of the teeth 2. An outer diameter of the tube 3 is 1.2 to 5 times an inner diameter of the tube 3 and a winding outer diameter of the tube 3 is 1.01 to 1.1 times a winding outer diameter of the teeth member 2.
Abstract:
A steel cord intended for use to reinforce rubber products is produced by drawing, into a steel filament of 0.10 to 0.40 mm in diameter and more than 3,000 N/mm.sup.2 in strength, a wire rod having a carbon content of more than 0.70% by weight, and twisting a plurality of such steel filaments together. Also a pneumatic tire is provided which employs in at least a portion of a reinforcing member thereof the steel cord improved in corrosion resistance and having an R.sub.1 /R.sub.0 ratio.times.100 which is less than 100, where R.sub.0 is the radius of spiral curvature of the spiraled steel filament resulting from untwisting said steel cord and R.sub.1 is the radius of spiral curvature of said steel filament of which the surface layer inside the spiral is removed by dissolving.
Abstract:
An armored optical cable and process of manufacturing is described. The armored optical cable exhibits minimal inelastic elongation in response to tension at elevated temperatures and is capable of withstanding harsh ambient conditions. The armored optical cable is fabricated in a unitary operation with a central bundle of one handedness surrounded by at least one outer armor layer of opposite handedness substantially torque balanced to the handedness of the central bundle.
Abstract:
A linear member for medical use having stretchability and flexibility while maintaining sufficient strength includes: an inner helical body including a plurality of helically wound wires, the inner helical body including a space portion inside, gap portions being provided in an axial direction between each wire; and an outer helical body provided outside of the inner helical body including a plurality of wires helically wound in such a manner as to form a layer along an axis of the helical body and a helical direction of the outer helical body is opposite to that of the inner helical body with gap portions being provided between each of the wires, the outer helical body being disposed to provide a multilayer structure.