Abstract:
A hoisting device rope has a width larger than a thickness thereof in a transverse direction of the rope. The rope includes a load-bearing part made of a composite material, said composite material comprising non-metallic reinforcing fibers, which include carbon fiber or glass fiber, in a polymer matrix. An elevator includes a drive sheave, an elevator car and a rope system for moving the elevator car by means of the drive sheave. The rope system includes at least one rope that has a width that is larger than a thickness thereof in a transverse direction of the rope. The rope includes a load-bearing part made of a composite material. The composite material includes reinforcing fibers in a polymer matrix.
Abstract:
An elevator support, such as a cable or a belt connected with an elevator car or counterweight, has load-bearing synthetic material strands, which are reinforced by the introduction of a second phase and have a higher modulus of elasticity than that of the unreinforced strands.
Abstract:
A fiber cable for helicopter rescue winches includes a plurality of load-bearing synthetic-fiber strands braided with one another, at least one electrically conductive insert, and a wear indicator providing a visual check of a state of the fiber cable.
Abstract:
A load bearing member (22) useful in an elevator system (10) includes at least one elongated tension member (36), a conversion coating (46) on the elongated tension member (36), and a polymer jacket (34) at least partially surrounding the coated elongated tension member (36). In one example, the conversion coating (46) includes at least one of an oxide, a phosphate, or a chromate.
Abstract:
A method of making a load bearing member (30) for an elevator system (20) includes placing at least one tension member (32) adjacent one side (60) of a first layer (36) of a polymer material. A second layer (38), comprising a urethane in a disclosed example, is added adjacent to at least the one side (60) of the first layer (36) such that the tension member (32) is between the first layer (36) and the second layer (38). Such a technique allows for eliminating the bridges typically used to support the tension members in molding devices. Eliminating such bridges eliminates the resulting grooves associated with previous arrangements. Providing a grooveless exterior on the jacket (34) of the load bearing member (30) eliminates a significant source of potential vibration and noise in an elevator system.
Abstract:
A method of manufacturing a cable assembly using stranded cable material. A manufacturing jacket is placed over the cable to hold the strands in a desired state. A length of jacketed cable is then cut to a desired length. Appropriate terminations are slipped over the manufacturing jacket on the cable's first end, its second end, or at some intermediate point. For a typical type of termination, a short portion of the manufacturing jacket is stripped away at the point of termination to expose the strands. After the terminations are placed in the appropriate position, potting compound or other mechanical means are typically applied to lock the terminations to the exposed lengths of strands. A completed cable assembly is thus created. However, the presence of the manufacturing jacket, while highly desirable for manufacturing, is often undesirable for end use. All of the manufacturing jacket, or in some instances a substantial portion thereof, is therefore removed, using a variety of disclosed methods, to form an unjacketed cable. A variety of techniques are disclosed for carrying out these steps, including the use of modified terminations and modified jackets. The finished product may have no jacket at all, a partial jacket, or a jacket which is different from the one used in the manufacturing process.
Abstract:
In a support means system a belt-like support means (12.3), which supports a load and which has at least one rib (20.3) or groove with wedge-shaped cross-section extending in the longitudinal direction of the support means (12.3), is driven by a support means pulley (4.3), which has at least one corresponding groove or rib (22.3) with wedge-shaped cross-section extending in circumferential direction, wherein a cavity (34, 35) is present between a rib crest of the wedge-shaped ribs (20.3, 22.3) and a corresponding groove base when the support means (12.3) rests on the support means pulley (4.3).
Abstract:
The invention relates to a lift system wherein a drive unit (2) drives, by means of a driving disk (4.1), a flat belt-type carrier means (12.1, 12.2) which carries the lift cage (3). Said flat belt-type carrier means comprises several ribs (20.1, 20.2) which extend in a parallel manner in a longitudinal direction of the carrier means on a bearing surface which is orientated towards the driving disk (4.1) and each rib comprises at least two traction carriers (22) which are orientated in a longitudinal direction of the carrier means. The whole cross-sectional surface of all the traction carriers (22) is at least 25% of the cross-section surface of the carrier means.
Abstract:
A flexible member, comprising: an inner core member, comprising a plurality of strands of liquid crystal polymers cooperating with each other to define and provide the inner core member; an outer sheath disposed about the inner core member, the outer sheath defining an inner opening for receiving the inner core member therein, the inner core member being slidably received within the outer sheath, wherein the flexible member is capable of being disposed about a curved surface, wherein a lubricant is disposed upon an exterior surface of the outer sheath and the outer sheath further comprises an end-fitting member disposed about a portion of the flexible connector, the portion of the flexible connector comprising an engagement surface for securement of the end fitting thereto.
Abstract:
The invention comprises a lift belt having a ribbed profile on a pulley engaging surface. The lift belt also comprises steel tensile cords within an elastomeric body. The ribbed profile engages a ribbed profile on a pulley. The lift belt exhibits increased load lifting capacity due to the increased surface area of the ribs as compared to a flat belt. The belt also comprises conductive tensile cords having a resistance. A change in resistance is used for measuring a belt condition as well as a belt load.