Abstract:
Methods and systems are provided for a turbocharger of an engine. In one example, a method may include balancing a pressure differential between compressor wheels of the turbocharger.
Abstract:
A variable intake system includes a pair of surge tanks connected in a communicating manner to a main intake pipe through a low speed communication pipe and a high speed communication pipe, a middle speed communication pipe for connecting the pair of surge tanks, and a noise reducing member integrally provided at the middle speed communication pipe to reduce noise.
Abstract:
The present invention relates to an assembly (1) for a combustion engine (10) comprising an electric compressor (5) and an air intake system, the air intake system comprising a double manifold (2) at the inlet to which there is a valve (4) configured to allow the intake gases to circulate in the manifold (2) and/or to allow the intake gases to bypass the electric compressor (5). The double manifold (2) comprises a swirl manifold (22) and a filling manifold (21), fed by two independent inlets, which can be closed off by the valve (4) independently of one another.
Abstract:
Methods and systems are provided for a parallel arrangement of at least two valved aspirators, with a high pressure source such as an intake throttle inlet coupled to a motive inlet of the arrangement and a low pressure sink such as an intake throttle outlet coupled to a mixed flow outlet of the arrangement. Intake throttle position and respective valves arranged in series with each aspirator of the arrangement are controlled based on intake manifold pressure and/or a desired engine air flow rate, for example such that a combined motive flow rate through the arrangement increases as intake manifold pressure increases. An intake throttle with a fully closed default position may be used in conjunction with the arrangement; during a fault condition where the intake throttle is fully closed, the valves of the arrangement may be controlled to achieve a controllable engine air flow rate during the fault condition.
Abstract:
In a mixing valve for an internal combustion engine of a motor vehicle, the distance between pivot axes of two flaps is smaller than the diameter of the largest flap. The flaps are also connected to a single drive device. The drive device ensures a collision-free coupling of the movements of the flaps.
Abstract:
Valve (1), notably for a combustion engine air circuit, comprising:—a body (2a, 2b) in which there are formed a main duct (5) and an auxiliary duct (6) opening into the main duct (5),—a shutter (3) pivot mounted in the body (2a, 2b) via a spindle (4), the shutter (3) comprising a first portion (10) able to shut off all or part of the main duct (5) when the shutter (3) is in a first position, and a second portion (11) able to shut off all or part of the auxiliary duct (6) when the shutter (3) is in a second position, and—at least one seal (19) borne by at least one of the portions, first (10) and second (11), of the shutter and arranged in such a way as to become interposed between at least a zone of said portion (10, 11) and at least one zone of the body when the shutter (3) is in the first or the second position.
Abstract:
An engine, an intake passage to introduce intake air to the engine, an exhaust passage to discharge exhaust air from the engine, and a high-temperature duct connected to the intake passage to introduce high-temperature air around the exhaust passage into the engine are provided in an engine compartment. The intake passage includes an intake-air inlet port to introduce outside air as low-temperature air. A passage switching valve provided between the intake passage and the high-temperature duct switches passages of the high-temperature air from the high-temperature duct and the low-temperature air from the intake air inlet port so as to selectively flow the air downstream of the intake passage. A valve control unit controls switching according to the temperature inside the compartment.
Abstract:
A variable intake system for a vehicle to regulate an amount of intake air according to driving conditions of an engine may include an air cleaner connected to an intake duct which draws in intake air and forms a flow path for the intake air inside the air cleaner, a battery assembly installed in the flow path inside the air cleaner, which includes a plurality of cooling paths that allow the intake air to flow through the plurality of cooling paths, and a valve body installed in the air cleaner and selectively varying the flow path of the intake air.
Abstract:
An intake control valve has a body, a valve, and a shaft. The valve has a connecting portion, a first boss located at an end of the connecting portion in the rotation axial direction; and a second boss located at an other end of the connecting portion in the rotation axial direction. The body has first and second bearing portions supporting the first and second protruding portions, respectively, first and second projection portions projecting inward from inner surfaces of the first and second bearings, respectively, to slidably support the first and second bosses, respectively, and first and second insertion openings defined between one circumferential end and an other circumferential end of the first and second projection portions, respectively. The first and second projection portions partially cover the first and second bosses, respectively, in a circumferential direction of the first boss and the second boss.
Abstract:
An internal combustion engine may include a cylinder head having a plurality of intake channels which lead to combustion chambers. A fresh gas distributor may be included for feeding fresh gas to the intake channels. The fresh gas distributor may have a flap arrangement including a flap shaft, which bears at least one flap for controlling the intake channels. The flap shaft may be mounted such that the flap rotates about a flap rotation axis. The fresh gas distributor may have a housing flange securing the fresh gas distributor to the cylinder head. The flap arrangement may be arranged in a region of the housing flange in a distributor housing of the fresh gas distributor. The cylinder head may have a recess, into which the fresh gas distributor is inserted in a region of the flap arrangement.