Abstract:
The teachings of the present disclosure provide methods and apparatus for enhanced incineration. A method for improving the performance of an incinerator may comprise separating one or more substances from a process fluid using a classifying centrifuge, ejecting a first substance from the classifying centrifuge, the first substance having characteristics optimized for incineration, incinerating the first substance, and using heat generated from the incineration of the first substance to enhance the combustion efficiency of an additional substance separated from the process fluid.
Abstract:
The method aims at obtaining from waste and more particularly from municipal solid waste (MSW) the energy contained therein at the highest level for industrial use by means of natural technologies and with low environmental impact. The method, denoted by the acronym NEW (Natural Energy from Waste) operates through the following process phases: a) aerobic digestion of the putrescible biological part to produce stabilised waste which is easy to handle, b) separation of a fraction rich in materials with a high heat value, c) storage of the residue, rich in biodegradable and inert substances, compacted into appropriate geometrical shapes in bioreactors which can be activated and sealed, d) activation of the bioreactors with water and their service in time during anaerobic digestion to supply biogas to be used for the production of energy, e) bio-stabilisation and dehydration of the residual material of the anaerobic treatment with air, f) possible recovery of the materials produced in this way. In this way the energy contained in the waste, is extracted at the most refined level in the form of plastic, plastic/paper and methane for energy uses with maximum yield and reduced production of ash, and the end material leaving the bioreactors is fully exhausted of its energy content and inertised.
Abstract:
In the process for treating incineration residues from waste incineration plants, the incineration material is incinerated on a furnace grate. The incineration residues produced are quenched in a wet slag remover and conveyed out of the latter. The wet incineration residues which come out of the wet slag remover are firstly divided into two fractions by means of a screening operation, after which the main fraction is washed with water taken from the wet slag remover, and in the process adhering fine pieces are separated off. The washed pieces of the incineration residues are fed for reuse. The washing water together with the ultra fine pieces which have been taken up during the washing operation pass into the wet slag remover. The fine fraction produced during the mechanical separation operation is fed back to the incineration operation.
Abstract:
Apparatus for the treatment of volatile material(s) in contaminated material(s) including a retort assembly which includes a rotatable retort disposed at least partially within a combustion chamber with a heater to indirectly heat the contents of the rotatable retort. A feeder feeds the contaminated material(s) to the retort. The apparatus further includes a pathway for passing contaminated material(s) to the retort and a conduit for passing the combustion gases from an afterburner to the retort assembly to provide additional heat for heating the contaminated material in the retort. The apparatus may also include a high temperature filter which can filter the volatiles before entering the afterburner.
Abstract:
An apparatus for recycling municipal waste as energy includes a shredder for shredding the waste, and removing rejects, the rejects from the shredder being sorted into a first stream of inert matter that is substantially unpolluted with organic matter and into a second stream of inert matter that is substantially polluted with either organic matter or with combustible heavy elements; a first outlet for removing the second stream of inert matter; a circulating fluidized bed reactor for receiving the shredded waste and producing gases with solid particles therein; a cyclone for separating out the solid particles and receiving the gases output by the reactor; a recuperator boiler into which the gases output by the cyclone are discharged and which is provided with a first set of heat exchangers, the boiler including a dust-filtering hopper; a second outlet for removing the solid particles from the dust-filtering hopper; a second set of heat exchangers disposed in a chamber into which the gases are fed after transition the boiler; a final treatment apparatus for treating the gases and producing solid matter, after the gases transit the chamber; a third outlet for removing the solid matter resulting from the final treatment apparatus; and an independent melting and vitrification furnace which is connected to each of the first, second, and third outlets by a respective controlled pipe.
Abstract:
Combustible is comminuted and dried, and metal and noncombustible are removed from the coarsely comminuted combustible. Then, the combustible is secondarily comminuted and separated into coarse combustible and fluff which is fine combustible. The coarse combustible of the separated combustible is fed onto a fire grate (2) of a refuse incinerator (1), and burned in flat bed combustion in a primary combustion chamber (4). On the other hand, the fluff is burned in suspended combustion in a secondary combustion chamber (7) with a combustion fluff burner (5) for incinerating combustible. Thus, refuse containing much plastics which is formed into fluff can be efficiently disposed of, whereby the amount of incineration is increased as a whole.
Abstract:
A system for generating electrical power, including a frame defining a vertical axis and a horizontal axis, and having a support base generally extending along the longitudinal axis. The support base has an input end and an output end. At least a first shear station includes a first shearing blade adapted to reciprocate in a vertical direction between a first displaced position displaced from the support base and a second approximated position proximate the support base to shear the tree waste supported by the support base. An index blade is adapted for at least general horizontal movement along the support base. The index blade is dimensioned and adapted to direct the sheared tree waste toward the output end of the support base. A pulverizing station receives the sheared tree waste directed through the output end of the support base. The pulverizing station includes a pulverizing member actuable to pulverize the sheared tree waste. A furnace receives and converts the pulverized tree waste into steam energy. A steam generator turbine converts the steam energy into electricity.
Abstract:
A municipal or like refuse is crushing, separating ferrous metals, mixing with crushed limestone, drying up and loading in furnace of pyrolysis. An electronic and electric scrap is crushing, drying up from surface water and warming on 2-4° C. above temperature of transporting air, divide into concoction nonferrous and precious metals and dielectric fraction, which go in furnace of pyrolysis by specified air, cleaned from dust and moistened up to 100% moisture by water. At mixing with dielectric fraction temperature of the air increases, relative moisture falls down to level, excluding condensation of moisture and spark formation in system. Pyrolysis is carried out under simultaneous neutralization fo allocated hydrogen chloride by limestone with reception of calcium chloride. Gas allocated at pyrolysis condensing and dividing to water and organic phases (liquid fuel). Solid products of pyrolysis together with ash and slag supplied from heaps of waste generated by a heat power station, washing by specified water phase for dissolving of calcium chloride and extracting ions of heavy metals, then centrifuging. Filtrate and washing water cleanse from heavy metals. Solid products of pyrolysis move for incineration in combustion chamber. Combustion chamber slag, cleanse from heavy metals and not burned-out fuel in slag of heat power station, cool by air, which is then used in combustion chamber. Slag concrete products expose by the thermohumid processing by part of humid chimney gases after drying the calcium chloride, the other part gas is going to production of the carbonic acid.
Abstract:
A biomass pulverizing apparatus includes a pulverizing apparatus body including a feedstock supply pipe for supplying biomass feedstock from above in a vertical axial direction, a pulverizing table for placing the biomass feedstock, a drive section for rotationally driving the pulverizing table, a pulverizing roller for pulverizing the biomass feedstock by a pressing force, the pulverizing roller being operated in conjunction with the rotation of the pulverizing table, a blower means for forming an upward flow upward from below on the outer peripheral side of the pulverizing table so as to jet conveying gas for conveying the biomass powder in an air stream, and a classifier for classifying the biomass powder accompanied with the conveying gas.
Abstract:
The teachings of the present disclosure provide methods and apparatus for enhanced incineration. A method for improving the performance of an incinerator may comprise separating one or more substances from a process fluid using a classifying centrifuge, ejecting a first substance from the classifying centrifuge, the first substance having characteristics optimized for incineration, incinerating the first substance, and using heat generated from the incineration of the first substance to enhance the combustion efficiency of an additional substance separated from the process fluid.