Abstract:
An optical receiver photonic integrated circuit (RxFIC) comprises a semiconductor monolithic chip having an input to receive from an optical transmissior link a combined channel signal originating from an optical transmitter source and comprising a plurality of channel signals having different wavelengths forming a wavelength grid. An optical decorobiner is integrated in the chip and optically coupled to the input to receive the multiplexed channel signal and provide a decombined individual channel signal on an output waveguide of a plurality of such output waveguides provided from the optical decombiner. A plurality of photodetectors are also integrated in the chip and each photodetector is optically coupled to one of the output waveguides to receive a decombined channel signal and convert the channel signal to an electrical signal. A controller is coupled to receive a portion of the converted signals to determine at least one performance property of the signals and provide service channel signal as feedback about that property via the semiconductor monolithic chip to the optical transmitter source. The controller is coupled to an integrated optical service channel (OSC) on the chip that has a light source which is modulated by the service channel signal. The light source may he integrated on the chip. The optical service channel (OSC) is coupled as an input to the decombiner for transport off the chip to optical transmitter source.
Abstract:
An optical transmitter photonic integrated circuit (TxPIC) comprises a semiconductor monolithic chip with a plurality of optical signal channels where each channel comprises a modulated signal source. The output from the modulated signal sources are coupled to an input of an integrated optical combiner to form a WDM output signal for transmission off the TxPIC chip to an optical transmission link. An optical service channel (OSC) is also integrated on the TxPIC chip to receive a service signal from the optical receiver source which is also coupled the optical transmission link.
Abstract:
A method of tuning optical components integrated on a monolithic chip, such as an optical transmitter photonic integrated circuit (TxPIC), is disclosed where a group of first optical components are each fabricated to have an operating wavelength approximating a wavelength on a standardized or predetermined wavelength grid and are each included with a local wavelength tuning component also integrated in the chip. Each of the first optical components is wavelength tuned through their local wavelength tuning component to achieve a closer wavelength response that approximates their wavelength on the wavelength grid.
Abstract:
A monolithic transmitter photonic integrated circuit (TxPIC) chip comprises an array of modulated sources formed on the PIC chip and having different operating wavelengths according to a standardized wavelength grid and providing signal outputs of different wavelengths. Pluralities of wavelength tuning elements are integrated on the chip, one associated with each of the modulated sources. An optical combiner is formed on the PIC chip and the signal outputs of the modulated sources are optically coupled to one or more inputs of the optical combiner and provided as a combined channel signal output from the combiner. The wavelength tuning elements provide for tuning the operating wavelength of the respective modulated sources to be approximate or to be chirped to the standardized wavelength grid. The wavelength tuning elements are temperature changing elements, current and voltage changing elements or bandgap changing elements.
Abstract:
An optical receiver photonic integrated circuit (RxPIC) system includes a monolithic semiconductor chip having an input to receive a WDM combined channel signal comprising a plurality of optical channel signals of different wavelengths. A chip-integrated decombiner is coupled to the chip input to receive the WDM combined channel signal and separate the same into a plurality of different channel signals having different wavelengths. An array of integrated photodetectors, also integrated on the chip, each receive a separated channel signal and together provide a plurality of electrical signals representative of the optical channel signals. An electronic amplifier receives and amplifies the electrical signals. An electronic dispersion equalization (EDE) circuit is coupled to receive and adjust the amplified electrical signals for timing errors due to imperfect clock recovery of said electrical signals. An clock and data recover (CDR) circuit recovers a signal clock and data signals from the electrical signals.
Abstract:
A method of in-wafer testing is provided for a monolithic photonic integrated circuit (PIC) formed in a semiconductor wafer where each such in-wafer circuit comprises two or more integrated electro-optic components, one of each in tandem forming a signal channel in the circuit. The method includes the provision of a first integrated photodetector at a rear end of each signal channel and a second integrated photodetector at forward end of each signal channel. Then, the testing is accomplished, first, by sequentially operating a first of a selected channel electro-optic component in a selected circuit to monitor light output from a channel via its first corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide first calibration data. Second, by sequentially operating a second of a selected channel electro-optic component in the selected circuit to monitor signal output from the second selected channel electro-optic component via its second corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide second calibration data. The first and second calibration data for each circuit channel for the selected circuit are then stored for future reference.
Abstract:
An optical transmitter photonic integrated circuit (TxPIC) comprises a semiconductor monolithic chip with a plurality of optical signal channels where each channel comprises a modulated signal source. The output from the modulated signal sources are coupled to an input of an integrated optical combiner to form a WDM output signal for transmission off the TxPIC chip to an optical transmission link. An optical service channel (OSC) is also integrated on the TxPIC chip to receive a service signal from the optical receiver source which is also coupled the optical transmission link.
Abstract:
A method of in-wafer testing is provided for a monolithic photonic integrated circuit (PIC) formed in a semiconductor wafer where each such in-wafer circuit comprises two or more integrated electro-optic components, one of each in tandem forming a signal channel in the circuit. The method includes the provision of a first integrated photodetector at a rear end of each signal channel and a second integrated photodetector at forward end of each signal channel. Then, the testing is accomplished, first, by sequentially operating a first of a selected channel electro-optic component in a selected circuit to monitor light output from a channel via its first corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide first calibration data. Second, by sequentially operating a second of a selected channel electro-optic component in the selected circuit to monitor signal output from the second selected channel electro-optic component via its second corresponding channel photodetector and adjusting its operating characteristics by detecting that channel electro-optic component output via its second corresponding channel photodetector to provide second calibration data. The first and second calibration data for each circuit channel for the selected circuit are then stored for future reference.