Abstract:
A membrane switch has a substrate and a plurality of first conductors formed on the substrate. A flexible membrane having a plurality of second conductors formed thereon is positioned relative to the substrate by a spacer which may be adhesively secured to both membrane and substrate. There are openings in the spacer in register with aligned first and second conductors. The membrane is caused to move toward the substrate through an opening to cause contact between the aligned first and second conductors in response to pressure upon the exterior of the membrane. There are vent passage means interconnecting the spacer openings, which vent passage means may be open to the atmosphere.
Abstract:
A connecting tail for a switching device, for example a membrane switch, includes a substrate having a plurality of spaced parallel silver conductors formed thereon. To prevent migration of silver between the spaced conductors there are a plurality of parallel notches, one between adjacent silver conductors. At least a portion of the conductors are covered by an adhesive, with the notches extending into the adhesive.
Abstract:
A membrane switch has a substrate and a plurality of first conductors formed on the substrate. A flexible membrane having a plurality of second conductors formed thereon is positioned relative to the substrate by a spacer which may be adhesively secured to both membrane and substrate. There are openings in the spacer in register with aligned first and second conductors. The membrane is caused to move toward the substrate through an opening to cause contact between the aligned first and second conductors in response to pressure upon the exterior of the membrane. There are vent passage means interconnecting the spacer openings, which vent passage means may be open to the atmosphere.
Abstract:
A membrane switch has a first silver conductor formed on a flexible membrane and a second silver conductor formed on a substrate, which may also be a flexible membrane. A spacer is positioned between and adhesively secured to the substrate and membrane in such a way that there is an opening in the spacer in register with the first and second conductors. Pressure applied to the membrane moves it toward the substrate through the opening in the spacer to cause electrical contact between the first and second conductors. There are means for impeding migration of the silver between the first and second conductors which essentially consists of orienting the conductors so as to provide the longest possible path between portions thereof.
Abstract:
A disconnector (100) and a method for manufacturing the disconnector (100) are disclosed. The disconnector (100) includes conductive arms (110) pivotally coupled with each other, and finger contacts (111). The finger contacts (111) have two opposite ends (115, 116) and an elastic portion (113) between the two opposite ends (115, 116), each of the finger contacts (111) being fixed to the respective conductive arm (110) by fasteners (112) at the two opposite ends (115, 116) such that the elastic portion (113) presses against the conductive arm (110). In response to the conductive arms (110) being pivoted toward each other and clamping an electrical contact (200) hanged at a bus-bar above the disconnector (100), the conductive arms (110) are electrically coupled with the electrical contact (200) via the respective finger contacts (111). The disconnector (100) according to the present disclosure provides outstanding contact performances while the material costs as well as manufacturing and assembly costs are relatively low.
Abstract:
An electric micro-switch has at least one electric contact. The contact has a profiled section. The profiled section has a longitudinal extension, a bent portion formed in the longitudinal extension and having an outer surface that is, at least in section, formed in a rounded manner. A contact region is defined on the outer surface of the bent portion. A method for manufacturing the micro-switch is also disclosed.
Abstract:
An electrical contact comprising a silver-coated stainless steel strip, which has an underlying layer comprising any one of nickel, cobalt, nickel alloys, and cobalt alloys, on at least a part of the surface of a stainless steel substrate, and has a silver or silver alloy layer formed as an upper layer, in which a copper or copper alloy layer with a thickness of 0.05 to 2.0 μm is provided between the silver or silver alloy layer and the underlying layer; and a producing method of the above-described electrical contact, in which the silver-coated stainless steel strip is subjected to a heat-treating in a non-oxidative atmosphere.
Abstract:
An electrical contact area on a printed circuit board (“PCB”), that would otherwise be subject to abrasion and possibly also corrosion, can be protected by covering it with another, more durable contact structure that is bonded to the first-mentioned contact area using an anistropic conductive adhesive (“ACA”). The more durable contact structure may include a member of PCB material or the like with electrically connected electrical contacts on its upper and lower surfaces. At least the upper one of these contacts (which is exposed for the service that involves possible abrasion and/or corrosion) may be given high durability by plating it with hard gold. The lower of these contacts is adhered to the main PCB via the above-mentioned ACA.
Abstract:
A contact structure for a switch that ensures stable electrical connection. The contact structure includes a substrate. A first fixed contact and a second fixed contact are arranged on the substrate and spaced from each other. An elastically deformable movable contact engages and disengages the first and second fixed contacts. The movable contact includes a recess. A conductive member is arranged on the movable contact for electrically connecting the first and second fixed contacts when the movable contact engages the first and second fixed contacts.
Abstract:
A push-button switch includes insulating member having a surface, first and second stationary contacts electrically isolated from each other and provided at the surface of the insulating substrate, and a movable contact. The movable contact includes an elastic metal base having a dome-shape and having a concave surface spaced from the first stationary contact and an outer rim mounted on the second stationary contact, a nickel plated layer provided on the concave surface of the elastic metal base and having a thickness ranging from 0.05 μm to 0.5 μm, a copper plated layer provided on the nickel plated layer and having a thickness ranging from 0.05 μm to 0.7 μm, and a silver plated layer provided on the copper plated layer and having a thickness ranging from 0.1 μm to 2 μm. The push-button switch has a long operating life time, has a stable contact resistance, and is inexpensive.