Abstract:
An arrangement for regulating the operating parameters of an electron beam generator in which the main cathode is indirectly heated by a directly-heated auxiliary cathode. A regulating circuit connected to the auxiliary cathode has three individual regulators connected in tandem for regulating the auxiliary cathode. Three separate signals corresponding to the heating current of the auxiliary cathode, the emission current of the auxiliary cathode, and the emission current of the main cathode are applied respectively to the inputs of the three individual regulators in feedback arrangement.
Abstract:
A power supply of an electron beam unit has switching components and comprises means which enables the power supply to operate both as a current source and as a voltage source, said means being in the form of at least one reactive component connected in the circuit of the power supply by at least one of its switching components.
Abstract:
A power generator with partial sinusoidal waveform includes a resonance module circuit and a pulse module circuit. The resonance module circuit includes a plurality of resonance control switches, and generates a first output voltage by selectively turning on and off the plurality of resonance control switches based on a plurality of resonance control signals. The pulse module circuit includes a plurality of pulse control switches, and generates a second output voltage by selectively turning on and off the plurality of pulse control switches based on a plurality of pulse control signals. The power generator generates a bias power based on the plurality of resonance control signals, the plurality of pulse control signals, the first output voltage and the second output voltage. The bias power has a non-sinusoidal voltage waveform during an entire time interval and a sinusoidal voltage waveform during a partial time interval.
Abstract:
A plasma processing apparatus includes: a processing container; an electrode that places a workpiece thereon; a plasma generation source that supplies plasma into the processing container; a bias power supply that supplies a bias power to the electrode; an edge ring disposed at a periphery of the workpiece; a DC power supply that supplies a DC voltage to the edge ring; a controller that executes a first control procedure in which the DC voltage periodically repeats a first state having a first voltage value and a second state having a second voltage value, the first voltage value is supplied in a partial time period within each period of a potential of the electrode, and the second voltage value is supplied such that the first and second states are continuous.
Abstract:
Provided is a charged particle beam device that can impart a function of an energy filter to even a small BSE detector. The charged particle beam device includes a fluorescent substance that converts charged particles generated by irradiation of a sample with a charged particle beam into light; a detector that detects the light emitted from the fluorescent substance; a light guide element for guiding the light from the fluorescent substance to the detector; a light amount adjuster that adjusts the amount of light that is received by the detector through the fluorescent substance and the light guide element; and a control unit that controls the light amount adjuster.
Abstract:
A plasma processing apparatus includes: a processing container; an electrode that places a workpiece thereon; a plasma generation source that supplies plasma into the processing container; a bias power supply that supplies a bias power to the electrode; an edge ring disposed at a periphery of the workpiece; a DC power supply that supplies a DC voltage to the edge ring; a controller that executes a first control procedure in which the DC voltage periodically repeats a first state having a first voltage value and a second state having a second voltage value, the first voltage value is supplied in a partial time period within each period of a potential of the electrode, and the second voltage value is supplied such that the first and second states are continuous.
Abstract:
A method for correcting a drift of an accelerating voltage includes measuring, after a position of a focus of a charged particle beam has been adjusted based on a first adjustment value and a predetermined time period has passed, a second adjustment value when the position of the focus of the charged particle beam is newly adjusted, calculating a deviation amount between the first adjustment value and the second adjustment value, calculating, using a correlation stored in a storage device, a correction value of an accelerating voltage to be applied to a beam source which emits the charged particle beam, where the correction value corresponds to the deviation amount, and correcting the accelerating voltage to be applied to the beam source, by using the correlation value.
Abstract:
An ion implanter includes a high-voltage power supply, a control unit that generates a command signal controlling an output voltage of the high-voltage power supply, an electrode unit to which the output voltage is applied, and a measurement unit that measures an actual voltage applied to the electrode unit. The control unit includes a first generation section that generates a first command signal for allowing the high-voltage power supply to output a target voltage, a second generation section that generates a second command signal for complementing the first command signal so that the actual voltage measured by the measurement unit becomes or close to the target voltage, and a command section that brings to the high-voltage power supply a synthetics command signal which is produced by synthesizing the first command signal and the second command signal.
Abstract:
In a high voltage, variable frequency radiation generation system, a carrier signal supplied to a primary coil of a transformer is varied, e.g., turned ON and OFF at variable frequencies. The ON duration and/or the average amplitude of the carrier signal may also be varied. Moreover, the carrier signal may be modulated using an audio signal. The parameters to control the variation of the carrier can be provided as a recipe via a software application. A server can provide different types of apps providing different control features. The server may also collect user characteristic data and recipe usage data, and may facilitate exchange of these data and may recommend recipes based on a particular user characteristic.
Abstract:
An instrument producing a charged particle beam according to the present invention is provided with: a charged particle source; a plurality of first electrodes disposed along a direction of irradiation of charged particles from the charged particle source; a plurality of insulation members disposed between the first electrodes; and a housing mounted around the plurality of first electrodes. The housing is formed from an insulating solid material, and includes a plurality of second electrodes disposed at positions in proximity to the plurality of first electrodes. At least one of the plurality of second electrodes is electrically connected to at least one of the plurality of first electrodes, each of the plurality of second electrodes having the same potential as the potential of the proximate one of the first electrodes.