摘要:
The present disclosure relates to a method of gettering that provides for a high efficiency gettering process by depositing a gettering material on a roughened substrate surface, and an associated apparatus. In some embodiments, the method is performed by providing a substrate into a processing chamber having residual gases. One or more cavities are formed in the substrate at locations between bonding areas on a top surface of the substrate. Respective cavities have roughened interior surfaces that vary in a plurality of directions. A getter layer is deposited into the one or more cavities. The roughened interior surfaces of the one or more cavities enable the substrate to more effectively absorb the residual gases, thereby increasing the efficiency of the gettering process.
摘要:
A method of manufacturing a semiconductor device includes forming a porous area of a semiconductor body. The semiconductor body includes a porous structure in the porous area. A semiconductor layer is formed on the porous area. Semiconductor regions are formed in the semiconductor layer. Then, the semiconductor layer is separated from the semiconductor body along the porous area, including introducing hydrogen into the porous area by a thermal treatment.
摘要:
In a SOI structure semiconductor device using a SOI substrate, a lattice distortion layer is formed by implanting Ar ions into a silicon substrate as an active layer. The lattice distortion layer is capable of serving as a gettering site. The dose amount of Ar ions is adjusted in such a manner that tensile stress in the lattice distortion layer is equal to or greater than 11 MPa and equal to or less than 27 MPa. Thus, the lattice distortion layer can prevent occurrence of a leakage current while serving as the gettering site.
摘要:
In a SOI structure semiconductor device using a SOI substrate, a lattice distortion layer is formed by implanting Ar ions into a silicon substrate as an active layer. The lattice distortion layer is capable of serving as a gettering site. The dose amount of Ar ions is adjusted in such a manner that tensile stress in the lattice distortion layer is equal to or greater than 11 MPa and equal to or less than 27 MPa. Thus, the lattice distortion layer can prevent occurrence of a leakage current while serving as the gettering site.
摘要:
The present invention provides a method for reusing a delaminated wafer, which is a method for applying reprocessing that is at least polishing to a delaminated wafer 17 byproduced when manufacturing an SOI wafer based on an ion implantation delamination method and thereby again reusing the delaminated wafer 17 as a bond wafer 21 in an SOI wafer manufacturing process, wherein, at least, a CZ wafer 11 used as the bond wafer is a low-defect wafer whose entire surface is formed of an N region, and an RTA treatment is carried out in the reprocessing with respect to the delaminated wafer 17 at a higher temperature than a temperature in formation of a thermal oxide film 12 performed with respect to the bond wafer in the SOI wafer manufacturing process. As a result, there can be provided the method for reusing a delaminated wafer which does not induce a bonding failure or a reduction in quality of an SOI layer even if the delaminated wafer byproduced when the CZ wafer having a large diameter of 200 mm or above is used as the bond wafer to fabricate the SOI wafer based on the ion implantation delamination method is repeatedly reused as the bond wafer.
摘要:
In a method for fabricating a semiconductor element in a substrate, first implantation ions are implanted into the substrate, whereby micro-cavities are produced in a first partial region of the substrate. Furthermore, pre-amorphization ions are implanted into the substrate, whereby a second partial region of the substrate is at least partly amorphized, and whereby crystal defects are produced in the substrate. Furthermore, second implantation ions are implanted into the second partial region of the substrate. Furthermore, the substrate is heated, such that at least some of the crystal defects are eliminated using the second implantation ions. Furthermore, dopant atoms are implanted into the second partial region of the substrate, wherein the semiconductor element is formed using the dopant atoms.
摘要:
SOI wafers are manufactured to have very thin device layers of high surface quality. The layer is ≦20 nm in thickness, has an HF density of ≦0.1/cm2, and a surface roughness of 0.2 nm RMS.
摘要翻译:SOI晶片被制造成具有非常薄的高表面质量的器件层。 该层的厚度<20nm,HF密度<= 0.1 / CM <2>,表面粗糙度为0.2nm RMS。
摘要:
One aspect of this disclosure relates to a memory device, comprising at least one gettering region, a memory array, a plurality of word lines and bit lines, and control circuitry. The gettering region is formed in a semiconductor substrate. The gettering region includes a precise arrangement of precisely-formed voids to getter impurities from a crystalline semiconductor region of the substrate. The memory array is formed in the crystalline semiconductor region, and includes a plurality of memory cells formed in rows and columns, and at least one transistor for each of the plurality of memory cells. Each word line is connected to a row of memory cells, and each bit line is connected to a column of memory cells. The control circuitry includes word line select circuitry and bit line select circuitry to select a number of memory cells for writing and reading operations.
摘要:
One aspect of this disclosure relates to a method for creating a gettering site in a semiconductor wafer. In various embodiments, a predetermined arrangement of a plurality of holes is formed in the semiconductor wafer through a surface of the wafer. The wafer is annealed such that the wafer undergoes a surface transformation to transform the arrangement of the plurality of holes into a predetermined arrangement of at least one empty space of a predetermined size within the wafer to form the gettering site. One aspect relates to a semiconductor wafer. In various embodiments, the wafer includes at least one device region, and at least one gettering region located proximate to the at least one device region. The gettering region includes a precisely-determined arrangement of a plurality of precisely-formed voids that are formed within the wafer using a surface transformation process. Other aspects and embodiments are provided herein.
摘要:
Ion implantation can be used to define a thermal dissipation path that allows for better thermal isolation between devices in close proximity on a microelectronics chip, thus providing a means for higher device density combined with better performance.