Abstract:
Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
Abstract:
Embodiments of circuits for use with an amplifier that includes multiple amplifier paths include a first circuit and a second circuit in parallel with the first circuit. The first circuit includes a first input coupled to a first power divider output, a first output coupled to a first amplifier path of the multiple amplifier paths, and a first adjustable phase shifter and a first attenuator series coupled between the first input and the first output. The second circuit includes a second input coupled to a second power divider output, a second output coupled to a second amplifier path of the multiple amplifier paths, and a second adjustable phase shifter coupled between the second input and the second output.
Abstract:
An adjustable power splitter includes: a power divider with an input and a first and second divider output; a first adjustable phase shifter and first adjustable attenuator series coupled to the first divider output and providing a first power output; and a second adjustable phase shifter and second adjustable attenuator series coupled to the second divider output and providing a second power output.
Abstract:
A high efficiency radio frequency (RF) power amplifier having dynamically controlled back off is disclosed. The RF input voltage is sampled by an adaptive analog signal processing circuit. The adaptive analog signal processing circuit controls the supply voltage to RF amplifier devices, such as LDMOS devices, which varies the efficiency or back off of the power amplifier. The variable supply voltage in turn varies peak power of the amplifier.
Abstract:
An amplifier power attenuator utilizes an amplified audio feedback signal from an audio amplifier (which is driving a loudspeaker), along with a user-set impedance and a maximum voltage set-point reflective of the operational parameters of the loudspeaker, to attenuate an audio signal prior to amplification thereby preventing damage to the loudspeaker. The impedance of a variable impedance optocoupler is changed to adjust the attenuation of the audio signal to one of a plurality of predetermined attenuation levels responsive to an error between a voltage level of the feedback signal and the maximum voltage set-point. The error is reflected in a counter value having a linear or non-linear relationship with the error dependent upon a magnitude of the error; the counter value is assessed against a plurality of target values associated with respective ones of the predetermined attenuation levels to identify the attenuation to be applied to the audio signal.
Abstract:
Example embodiments provide a process that includes one or more of receiving an audio signal at a feedback compressor circuit, determining how much to attenuate the audio signal when a power level of the audio signal exceeds a threshold power level, combining the audio signal with an auxiliary attenuation signal from an auxiliary attenuation source and a compressed attenuation signal from the feedback compressor circuit to create a combination signal, and generating an audio output signal of the feedback compressor circuit based on the combination signal.
Abstract:
A TX-TX pre-compensation system that estimates unwanted coupling in a victim transmit chain caused by an aggressor transmit chain and injects a pre-compensation signal to cancel out the estimated coupling. In some embodiments, a signal measurement module estimates the amplitude, phase, and envelope delay of the coupling and an isolation pre-compensation module generates the pre-compensation signal based on the estimated amplitude, the estimated phase, the estimated envelope delay, and the difference between the carrier frequencies of the transmit chains. Since the phase of the coupling may be affected by the carrier frequency of the transmit chains, in some embodiments the phase of the pre-compensation signal is adjusted in response to a change in carrier frequency. Since the amplitude of the coupling may be affected by attenuator gain settings, in some embodiments the amplitude of the pre-compensation signal may be adjusted in response to a change in attenuator gain setting.
Abstract:
A variable attenuator (v-ATT) is disclosed. The v-ATT includes an input terminal, an output terminal, a transmission line between the input and output terminals, at least two stages provided between the transmission line and the ground, and a bias unit. Each of the stages includes a field effect transistor (FET) that varies impedance between the transmission line and the ground according to a bias provided to the gate thereof. The bias unit generates the biases each provided to the stages. One of the features of the v-ATT is that at least one of the stages receives at least one of the biases that is different from biases provided to other of the at least one of the stages.
Abstract:
The present disclosure relates to a power amplifier (PA) system provided in a semiconductor device and having feed forward gain control. The PA system comprises a transmit path and control circuitry. The transmit path is configured to amplify an input radio frequency (RF) signal and comprises a first tank circuit and a PA stage. The control circuitry is configured to detect a power level associated with the input RF signal and control a first bias signal provided to the PA stage based on a first function of the power level and control a quality factor (Q) of the first tank circuit based on a second function of the power level.
Abstract:
The transmission device comprising a transmit stage configured to deliver a transmission signal on an input-output node of an antenna and comprising a power transistor coupled to the input-output node and configured to amplify a signal to be transmitted. The device comprises a receive stage configured to receive a reception signal on the input-output node and comprising an attenuator circuit configured to attenuate the reception signal. The attenuator circuit comprising the power transistor and a control circuit able to place the power transistor in a triode mode.