Abstract:
A circuit may include a ring oscillator circuit and monitoring circuitry. The ring oscillator circuit has a group of inverters in a loop, whereby the group of inverters includes first, second, and third output nodes. The monitoring circuitry may monitor for error events in a signal that has passed through the inverters from any one of the first, second, or third output nodes, and may generate first and second monitoring circuitry outputs. The circuit may further include an error correction circuit that produces an error correction output based on the first and second monitoring circuitry outputs. Accordingly, the monitoring circuitry may generate first and second updated monitoring circuitry outputs based on the error correction output. The first and second updated monitoring circuitry outputs may be logically combined using a logic circuit to reset the signal that has passed through the loop.
Abstract:
A circuit may include a ring oscillator circuit and monitoring circuitry. The ring oscillator circuit has a group of inverters in a loop, whereby the group of inverters includes first, second, and third output nodes. The monitoring circuitry may monitor for error events in a signal that has passed through the inverters from any one of the first, second, or third output nodes, and may generate first and second monitoring circuitry outputs. The circuit may further include an error correction circuit that produces an error correction output based on the first and second monitoring circuitry outputs. Accordingly, the monitoring circuitry may generate first and second updated monitoring circuitry outputs based on the error correction output. The first and second updated monitoring circuitry outputs may be logically combined using a logic circuit to reset the signal that has passed through the loop.
Abstract:
An apparatus supplies an ohmic, inductive or capacitive load with needle pulse trains in which each individual pulse has a duration of less than 1 millisecond. Due to pulse amplitudes which are by far higher in relation to the nominal voltage of the load, considerable increases in efficiency can be achieved, however, without damaging the load or impairing its useful life. The needle pulses are of constant amplitude and the same polarity. The ratio between pulse voltage and nominal voltage is always higher than 1.7.
Abstract:
An electronic system produces a train of electrical pulses or signals for controlling the dispensing of materials in different amounts or proportions, such as desired in the automatic batching of concrete. By control settings preset on a main electronic decimal counter, a prescribed number of pulses is delivered by the system to a mechanical analog device which in turn controls the material-dispensing mechanism. Additional presettable electronic counters are combined with the main decimal counter to achieve any number of batch formulations proportioned on the basis of arithmetic ratios established by the control settings selected on the counters.
Abstract:
According to one embodiment, an electronic circuit is described comprising an output circuit configured to output data elements, an input circuit configured to receive the data elements from the output circuit wherein the input circuit is clocked by a clock signal and receives the data elements in accordance with its clocking, a signaling circuit configured to, when the output circuit switches from the output of one data element to the output of a following data element, signal to interrupt the clocking of the input circuit and a controller configured to interrupt the clocking of the input circuit in response to the signaling.
Abstract:
A clock switch device includes a control circuit and a tri-state buffer. The control circuit deactivates an output enable signal when a frequency of a clock signal varies and activates the output enable signal when the frequency of the clock signal is maintained without change. The tri-state buffer maintains an output electrode at a high impedance state when the output enable signal is deactivated and buffers the clock signal and outputs the buffered clock signal through the output electrode as an output clock signal when the output enable signal is activated.
Abstract:
A method and apparatus for mitigating electromagnetic noise in an electronic device. The method includes generating a trigger clock signal at a first frequency, and generating a second clock signal at a second frequency. The second frequency is higher than the first frequency. The method also includes receiving an input signal with a converter circuit, detecting an event based on the trigger clock signal, and predicting a time for a conversion of the input signal based on the detected event. The method further includes blanking the second clock signal for a predetermined period based on the predicted time for a conversion.
Abstract:
Aspects of the disclosure provide a data storage circuit. The data storage circuit includes a first latch, a second latch, and a clock gating and buffer circuit. The first latch is configured to provide an intermediate output to the second latch in response to a data input when a clock signal is in a first state and to hold the intermediate output when the clock signal is in a second state, and the second latch is configured to provide a data output in response to the intermediate output and the clock signal. The clock gating and buffer circuit is configured to provide the clock signal, and to suppress providing the clock signal to one or both of the first latch and the second latch when the intermediate output stays unchanged.
Abstract:
A signal processing circuit may be provided. The signal processing circuit may include a mask generation circuit configured to output a mask signal in response to an internal control signal and masking information; and a masking circuit configured to mask the internal control signal in response to the mask signal, and output a masked control signal, wherein the mask generation circuit resets the mask signal in response to an internal reset signal, regardless of a pause polarity of the internal control signal.