Abstract:
Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 1,4-butanediol (BDO). Also provided herein are methods for using such an organism to produce BDO.
Abstract:
The disclosure relates to fatty diols and recombinant microorganisms for producing them. More particularly, the disclosure relates to recombinant microorganisms engineered to produce fatty diols via fermentation. Further encompassed is a process that uses the microorganisms to produce fatty diols from a simple carbon source.
Abstract:
The invention relates to compositions and methods, including polynucleotide sequences, amino acid sequences, and engineered host cells for producing fatty acids and derivates of fatty acids such as acyl-CoA, terminal olefins, fatty aldehydes, fatty alcohols, alkanes, alkenes, wax esters, ketones and internal olefins through altered expression of the transcription factor, fadR.
Abstract:
The disclosure relates to engineered plant acyl-ACP thioesterases having improved activity for the production of medium-chain fatty acid derivatives including e.g., eight carbon and ten carbon fatty acids and fatty acid derivatives. The disclosure further relates to recombinant host cells comprising the engineered plant acyl-ACP thioesterases having improved activity for the production of medium-chain fatty acid derivatives. The disclosure also relates to methods of decreasing toxicity and improving production of medium-chain fatty acids and derivatives.
Abstract:
The disclosure relates to the field of specialty chemicals and methods for their synthesis. In embodiments, the disclosure provides viable bacterial cells which comprise heterologous dual 3-hydroxy-acyl-ACP dehydratase/isomerases, etc. The disclosure further provides monounsaturated fatty acid derivative molecules produced by the viable bacterial cells which are non-native to the bacterial cells. The disclosure further provides methods for the preparation and production of non-native monounsaturated fatty acid derivative molecules such as e.g., an ω3-monounsaturated fatty acid derivative, an ω5-monounsaturated fatty acid derivative, an ω9-monounsaturated fatty acid derivative, an ω11-monounsaturated fatty acid fatty acid derivative, etc.
Abstract:
The present disclosure provides thiolases and polypeptide variants of 3-hydroxybutyryl-CoA dehydrogenase, nucleic acids encoding the same, vectors comprising the nucleic acids, and cells comprising the polypeptide variants and/or thiolase, the nucleic acids, and/or the vectors. The present disclosure also provides methods of making and using the same, including methods for culturing cells, and for the production of various products, including 3-hydroxybutyryl-CoA (3-HB-CoA), 3-hydroxybutyraldehyde (3-HBal), 3-hydroxybutyrate (3-HB), 1,3-butanediol (1,3-BDO), and esters and amides thereof, and products made from any of these.
Abstract:
The disclosure relates to acyl-ACP reductase (AAR) enzyme variants that result in improved fatty aldehyde and fatty alcohol production when expressed in recombinant host cells. The disclosure further relates to methods of making and using such AAR variants for the production of fatty alcohol compositions having particular characteristics.
Abstract:
The invention relates to a method for the removal of water from and transport of at least one aliphatic diamine comprising the following steps: a) providing a first composition including 60 to 98 wt.-% water and 2 to 40 wt.-% of the at least one aliphatic diamine with two —NH2 groups per molecule, each of them bound to a primary or secondary carbon atom, b) removing water at least partially from said first composition by distillation at a first production location in a distillation apparatus comprising at least two distillation columns operating at different head pressures, thus generating a second composition comprising the diamine and ≤55 wt.-% water, wherein the vapours emerging from the distillation column operating at the higher head pressure are used to evaporate the liquid in the bottoms and/or the feed of a distillation column operating at the lower head pressure at least partially, c) transporting said second composition during a span of time t from the first production location to a second production location, wherein the span of time t including times for optional temporary storage is at least 6 h.
Abstract:
The invention provides an engineered carboxylic acid reductase (CAR) enzyme, a nucleic acid encoding the CAR enzyme, and a non-naturally occurring microbial organism comprising an exogenous nucleic acid encoding the CAR, an engineered transaminase (TA) enzyme, and/or a hexamethylenediamine (HMD) transaminase (TA2) enzyme. The invention provides a non-naturally occurring microbial organism that has a 1,6-hexanediol (HDO) pathway with a HDO pathway enzyme expressed in sufficient amounts to produce 6 aminocaproate semialdehyde, HDO, or both. The invention further provides a non-naturally occurring microbial organism that has an HMD pathway with a HMD pathway enzyme expressed in sufficient amounts to produce 6-aminocaproate semialdehyde, HMD, or both. The invention additionally provides bioderived HMD, 6-aminocaproate semialdehyde, and/or HDO and methods for producing bioderived HMD, 6-aminocaproate semialdehyde, and/or HDO.
Abstract:
The invention provides non-naturally occurring microbial organisms containing an alkene pathway having at least one exogenous nucleic acid encoding an alkene pathway enzyme expressed in a sufficient amount to convert an alcohol to an alkene. The invention additionally provides methods of using such microbial organisms to produce an alkene, by culturing a non-naturally occurring microbial organism containing an alkene pathway as described herein under conditions and for a sufficient period of time to produce an alkene.