Abstract:
Nanowire and larger, post-based HEMTs, arrays of such HEMTs, and methods for their manufacture are provided. In one embodiment, a HEMT can include a III-N based core-shell structure including a core member (e.g., GaN), a shell member (e.g., AlGaN) surrounding a length of the core member and a two-dimensional electron gas (2-DEG) at the interface therebetween. The core member including a nanowire and/or a post can be disposed over a doped buffer layer and a gate material can be disposed around a portion of the shell member. Exemplary methods for making the nanowire HEMTs and arrays of nanowire HEMTs can include epitaxially forming nanowire(s) and epitaxially forming a shell member from each formed nanowire. Exemplary methods for making the post HEMTs and arrays of post HEMTs can include etching a III-N layer to form III-N post(s) followed by formation of the shell member(s).
Abstract:
A device for coating dry powder microparticles onto a surface may include a jet mill configured to mill dry powder particles into microparticles having a desired aerodynamic diameter and to deaggregate the microparticles, a feed hopper structured and arranged to feed dry powder particles to the jet mill, a surface configured to receive dry powder microparticles and an exit nozzle associated with the jet mill The exit nozzle may be arranged to direct deaggregated micronized dry powder particles from the jet mill to the surface to be coated. The device may further include a holder structured and arranged to hold an item, wherein the item includes the surface. In some aspects of the device, the item may be a film.
Abstract:
The present invention includes a magnetically susceptible polymer component, a method of making the same, and apparatuses and systems for mixing, separating or localizing a magnetically susceptible polymer compound in a reaction. The magnetically susceptible polymer component includes a polymer and a magnetically susceptible particle of a predetermined size, which yields a component having a much-improved magnetic reactivity due to the increase in magnetic material by mass percentage. The apparatuses and systems of the present invention employ controllable magnetic fields distributable in perpendicular directions in order to precisely control the orientation, position and relative motion of any magnetically susceptible components within a reaction vessel.
Abstract:
A congruence reduction algorithm that forms composite lenslets by reducing data of a plurality of focal spot locations using linear transformations. Use of the congruence reduction algorithm increases the speed of calculations by which corrective elements such as deformable mirrors function, reduces the number of lenslets in an array and improves reconstruction time and focal spot quality.
Abstract:
Exemplary embodiments provide materials and methods of forming a metal oxide composite and a porous metal oxide, which can be used for applications including catalysis, sensors, energy storage, solar cells, heavy metal removal and separations, etc. In one embodiment, a one-step solvothermal process can be used to form the metal oxide phase with high crystallinity and high surface area.
Abstract:
A method of epitaxial growth of cubic phase, nitrogen-based compound semiconductor thin films on a semiconductor substrate, for example a substrate, which is periodically patterned with grooves oriented parallel to the crystal direction and terminated in sidewalls, for example sidewalls. The method can provide an epitaxial growth which is able to supply high-quality, cubic phase epitaxial films on a silicon substrate. Controlling nucleation on sidewall facets, for example , fabricated in every groove and blocking the growth of the initial hexagonal phase at the outer region of an epitaxial silicon layer with barrier materials prepared at both sides of each groove allows growth of cubic-phase thin film in each groove and either be extended to macro-scale islands or coalesced with films grown from adjacent grooves to form a continuous film. This can result in a wide-area, cubic phase nitrogen-based compound semiconductor film on a substrate.
Abstract:
The present invention relates to the use of suppressive macrophage or dendritic cells (activated with C-reactive protein or CRP-related compounds), for the treatment of various disease states and conditions associated with immune thrombocytopenic purpura (ITP) and/or systemic lupus erythematosus (SLE), including lupus of the skin (discoid), systemic lupus of the joints, lungs and kidneys, hematological conditions including hemolytic anemia and low lymphocyte counts, lymphadenopathy and CNS effects, including memory loss, seizures and psychosis, among numerous others as otherwise disclosed herein. In another aspect of the invention, the reduction in the likelihood that a patient who is at risk for an outbreak of a disease state or condition associated with systemic lupus erythematosus or ITP will have an outbreak is an additional aspect of the present invention. In the case of ITP, methods of the present invention are used to increase platelet counts in the treated patient. In addition, in the case of ITP, the present invention relates to the use of CRP or a CRP-related compound in the absence of suppressive macrophages for the treatment of ITP.
Abstract:
Various embodiments provide a non-collimated 3D localization technique to detect an unknown radioactive source in a medium material using a plurality of detectors. 3D position information (x, y, z), and strength of the unknown radioactive source(s) can be determined by a comparison or a data fit between the measured detector responses with a mapping of detector responses performed with known calibration radioactive source(s). The non-collimated 3D localization technique can be used to extract lateral and depth position of contaminations in soil, concrete, or metal, to aid in monitoring and localizing radiation for nonproliferation and prevent smuggling of nuclear materials, and/or to detect and localize radioactive source(s) in medical or non-medical purposes.
Abstract:
Exemplary embodiments provide an image interferometric microscope (IIM) and methods for image interferometric microscopy. The disclosed IIM can approach the linear systems limits of optical resolution by using a plurality of off-axis illuminations to access high spatial frequencies along with interferometric reintroduction of a zero-order reference beam on the low-NA side of the optical system. In some embodiments, a thin object can be placed normal to the optical axis and the frequency space limit can be extended to about [(1+NA)n/λ], where NA is the numerical-aperture of the objective lens used, n is the refraction index of the transmission medium and λ is an optical wavelength. In other embodiments, tilting the object plane can further allow collection of diffraction information up to the material transmission bandpass limited spatial frequency of about 2n/λ.