Abstract:
A matrix H for encoding data words is defined for wide word ECC with uniform density and a reduced number of components. The H-matrix is incorporated in an encode unit operable to Hamming encode a data word with a 10×528 matrix generated in groups of four columns wherein; a first column is a complement of a second column; the value of the second column ranges from 9 to 271 in increments of two; a third column is a complement of a fourth column; and the value of the fourth column is the same as the value of the second column less one; and wherein a 528-bit bottom row is added to the 10×528 matrix comprising alternating zeroes and ones starting with a zero creating an 11×528 matrix.
Abstract:
In a semiconductor device, a method for reducing the effect of crosstalk from an aggressor line to a victim line begins with sensing the occurrence of a voltage change on the aggressor line that can induce a voltage pulse having a pulse magnitude that exceeds a pulse threshold on the victim line. The induced voltage pulse is counteracted by coupling the victim line to a counteracting voltage source. After a predetermined delay period, the coupling of the counteracting voltage source is removed from the victim line. The voltage change on the aggressor line my be sensed from a node connected to either the aggressor line or the victim line. A rising induced pulse is counteracted by coupling the victim line to a more negative voltage source, and a falling induced pulse is counteracted by coupling the victim line to a more positive voltage source.
Abstract:
A write driver driving a write current through a head connected to the write head by an interconnect. The write driver includes a circuit matching output resistance to the odd characteristic impedance of the interconnect and a voltage boosting circuit. The voltage boosting circuit in connected between a high voltage reference or supply voltage and a low voltage reference, and includes a pair of current sources, such as MOS transistors, connected to the input node of a single capacitor. During the overshoot duration, the current sources selectively operate at saturation to generate a pulsed current with an amplitude of half the load current. The recharge of the capacitor is done with the load current.
Abstract:
A first base station is associated with a first quiet period, and a second base station is associated with a second quiet period. The quiet periods are coordinated so that an amount of overlap between the quiet periods is acceptable. For example, the quiet periods could be coordinated so that no overlap exists between the quiet periods. During the first quiet period, the first base station and/or an associated device (such as a CPE served by the first base station) performs in-band sensing to detect wireless devices that use a first frequency or channel also used by the first base station. During the second quiet period, the first base station and/or a coordinate device (such as a CPE served by the first base station and assisting the second base station) performs out-band sensing to detect wireless devices that use a second frequency or channel also used by the second base station.
Abstract:
A fluorescent lamp assembly includes a fluorescent lamp ballast capable of detecting at least one of a plurality of input signals and generating an output signal. The output signal is associated with a power level that is based on the at least one detected input signal. The fluorescent lamp assembly also includes a fluorescent lamp capable of receiving the output signal and generating light. An intensity of the light is based on the power level associated with the output signal.
Abstract:
A released-beam sensor includes a semiconductor substrate having a layer formed thereon, and an aperture formed in the layer. A beam is mechanically coupled at a first end to the layer and suspended above the layer such that a second end forms a cantilever above the aperture. A boss is coupled to a second end of the beam and suspended at least partially within the aperture. The beam is configured to flex in response to acceleration of the substrate along a vector substantially perpendicular to a surface of the substrate. Parameters of the sensor, such as the dimensions of the beam, the mass of the boss, and the distance between the boss and a contact surface within the aperture, are selected to establish an acceleration threshold at which the boss will make contact with the contact surface. The sensor may be employed to deploy an airbag in a vehicle.
Abstract:
A contact is formed within an active region of a substrate at the edge of a die, preferably within the first metallization level in the active region of the substrate. An opening having sloped sidewalls is then etched into the back side of the substrate, exposing a portion of the active region contact. An interconnect is formed on the opening sidewall to connect the active region contact with a die contact pad on the backside surface of the substrate. The active region contact preferably spans a boundary between two die, with the opening preferably etched across the boundary to permit inter-connects on opposing sidewalls of the opening to each contact the active region contact within different die, connecting the active region contact to die contact pads on different dice. The dice are then separated along the boundary, through the active region contact which becomes two separate active region contacts. By forming a shared contact opening spanning two dice, the backside contact is formed around the die edge and the backside surface area necessary for the contact opening is minimized. The backside contact allows direct placement of the integrated circuit die on contacts within the packaging, such as a ball grid array, eliminating the need for wire bonds. The need for a pad etch through passivation material overlying active devices on the front side of the die is also eliminated, and no mask levels are added for the devices formed on the front side.
Abstract:
A method and system for routing network-based data arranged in frames is disclosed. A host processor analyzes transferred bursts of data and initiates an address and look up algorithm for dispatching the frame to a desired destination. A shared system memory existing between a network device, e.g., an HDLC controller, working in conjunction with the host processor, receives data, including any preselected address fields. The network device includes a plurality of ports. Each port includes a FIFO receive memory for receiving at least a first portion of a frame. The first portion of the frame includes data having the preselected address fields. A direct memory access unit transfers a burst of data from the FIFO receive memory to the shared system memory. A communications processor selects the amount of data to be transferred from the FIFO receive memory based on the desired address fields to be analyzed by the host processor.
Abstract:
A large diameter glass wafer is pattern-etched to provide a plurality of elongated lens elements arranged side-by-side, the etching leaving small rods in place to keep the lens elements connected to the wafer during mirror processing. The etching provides curved surfaces for lenses and flat surfaces for mirrors. The mirrors are formed by selectively depositing reflective material on the flat surfaces. The reflective material may comprise an oxide, nitride, sulfide, or fluoride of a transition metal. The flat surfaces that define the mirrors are disposed at angles to the longitudinal dimension of each lens element. In use in an optical disc system, light from a laser diode is reflected by the mirrors and directed at an optical disc through a first lens. Light returns from the disc on a parallel path through a second lens, passes through the lens element, and is directed at a photodetector. The system may include an elongated base element attached to each lens element. Pattern-etching of a second glass wafer provides multiple base elements per wafer. Each base element may include an angled surface on which a reflective material is deposited to form a mirror for reflecting laser light during use in the system.
Abstract:
A method for varying gain exponentially with respect to a control signal is provided. The method includes receiving a primary control signal. A secondary control signal is generated based on the primary control signal. The secondary control signal is provided to a variable gain amplifier and is operable to exponentially vary a gain for the variable gain amplifier with respect to the primary control signal.