摘要:
A zinc/air battery includes a plurality zinc/air battery cells and an arrangement for exposing the plurality of zinc/air battery cells to air wherein the exposing arrangement opens the plurality of zinc/air battery cells in a serial manner such that only one cell is operative at a time.
摘要:
Methods and devices are disclosed, such as those involving forming a charge trap for, e.g., a memory device, which can include flash memory cells. A substrate is exposed to temporally-separated pulses of a titanium source material, a strontium source material, and an oxygen source material capable of forming an oxide with the titanium source material and the strontium source material to form the charge trapping layer on the substrate.
摘要:
Atomic layer deposition methods as described herein can be advantageously used to form a metal-containing layer on a substrate. For example, certain methods as described herein can form a strontium titanate layer that has low carbon content (e.g., low strontium carbonate content), which can result in layer with a high dielectric constant.
摘要:
A method of reducing an energy consumption of a wireless network, the method including periodically entering a sleep mode by a receiver node, broadcasting a signal simultaneously across a wide band frequency range, upon waking up from the sleep mode, listening by the receiver node to only a first narrow part of the wide band frequency range, the receiver node subsequently either returning to sleep if a signal strength of the broadcasted signal is less than a predefined signal strength threshold, or staying awake for an additional period of time if the signal strength of the broadcasted signal is greater than the predefined signal strength threshold.
摘要:
A method and system to synchronize a first device and a second device includes generating a first tone by the first device, the first tone one of including an identity of the second device and generated at a predefined time, receiving the first tone by the second device, setting a clock of the second device based on the received first time, and sending an acknowledgment by the second device to the first device.
摘要:
A method for transmitting data from a sender node from among at least one sender node to a receiver node in a wireless network, the method including (a) sampling, by the receiver node, in each time slot, a main network frequency and at least one backup frequency, (b) transmitting, by the sender node, a message on the main network frequency in a first time slot, without using a multiple access protocol, (c) transmitting, by the sender node, the message on the main network frequency in a next time slot, using the multiple access protocol exchange, if an acknowledgement of the message is not received from the receiver node, (d) transmitting, by the sender node, the message on at least one backup frequency in the next time slot, using a multiple access protocol, if the main network frequency is busy after performing step (c), (e) repeating steps (c) and (d) for a predefined number of time slots, unless or until an acknowledgement is received from the receiver node, (f) transmitting, by the sender node, the message on each backup frequency, using the multiple access protocol, unless or until an acknowledgment is received from the receiver node, and (g) performing an exponential backoff and subsequent transmission of the message, by the sender node, if an acknowledgement is still not received from the receiver node after performing steps (a) through (f)
摘要:
Described examples include a resistor having a substrate having a non-conductive surface and a patterned polysilicon layer on the non-conductive surface, the patterned polysilicon layer including polycrystalline silicon wherein at least 90% of the grains in the polycrystalline silicon are 30 nm or smaller. The resistor also has a first terminal in conductive contact with the patterned polysilicon layer and a second terminal in conductive contact with the polysilicon layer and spaced from the first contact.
摘要:
Select devices for memory cell applications and methods of forming the same are described herein. As an example, one or more non-ohmic select devices can include at least two tunnel barrier regions formed between a first metal material and a second metal material, and a third metal material formed between each of the respective at least two tunnel barrier regions. The non-ohmic select device is a two terminal select device that supports bi-directional current flow therethrough.
摘要:
Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10−7 amps/cm2 at from −1.1V to +1.1V.
摘要翻译:公开了形成电容器的电容器和方法,其包括内部导电金属电容器电极和外部导电金属电容器电极。 电容器电介质区域被容纳在内导电金属电容电极和外导电金属电容器电极之间,并且具有不大于150埃的厚度。 公开了厚度和关系的材料的各种组合,其相互之间可以实现和导致电介质区域的介电常数k至少为35,而在-1.1V至-1.0V的范围内漏电流不大于1×10-7Aps / cm 2 + 1.1V。
摘要:
Some embodiments include memory cells which contain, in order; a first electrode material, a first metal oxide material, a second metal oxide material, and a second electrode material. The first metal oxide material has at least two regions which differ in oxygen concentration relative to one another. One of the regions is a first region and another is a second region. The first region is closer to the first electrode material than the second region, and has a greater oxygen concentration than the second region. The second metal oxide material includes a different metal than the first metal oxide material. Some embodiments include methods of forming memory cells in which oxygen is substantially irreversibly transferred from a region of a metal oxide material to an oxygen-sink material. The oxygen transfer creates a difference in oxygen concentration within one region of the metal oxide material relative to another.